Abstract:
Polarization independent optical isolator/circulator devices based on Mach-Zehnder interferometers. The devices utilize either polarization splitting and nonreciprocal polarization conversion or nonreciprocal phase shift within the interferometric arm. For devices with nonreciprocal phase shift, the relative phase difference is 0° in the forward propagation direction and 180° in the backward propagation direction, or vice versa, so that light goes into a bar or cross port depending on the propagation direction. The devices have advantages over previous designs in the use of inexpensive device components, simple alignment, minimal space requirement, and negligible polarization mode dispersion or polarization dependent loss. In addition, the devices can be made in a waveguide form with minimal loss and with high fabrication ease. An additional phase compensator and/or a variable attenuator can be integrated in order to relax the fabrication tolerances.
Abstract:
Polarization independent optical isolator/circulator devices based on Mach-Zehnder interferometers. The devices utilize either polarization splitting and nonreciprocal polarization conversion or nonreciprocal phase shift within the interferometric arm. For devices with nonreciprocal phase shift, the relative phase difference is 0° in the forward propagation direction and 180° in the backward propagation direction, or vice versa, so that light goes into a bar or cross port depending on the propagation direction. The devices have advantages over previous designs in the use of inexpensive device components, simple alignment, minimal space requirement, and negligible polarization mode dispersion or polarization dependent loss. In addition, the devices can be made in a waveguide form with minimal loss and with high fabrication ease. An additional phase compensator and/or a variable attenuator can be integrated in order to relax the fabrication tolerances.
Abstract:
Polarization independent optical isolator/circulator devices based on Mach-Zehnder interferometers. The devices utilize either polarization splitting and nonreciprocal polarization conversion or nonreciprocal phase shift within the interferometric arm. For devices with nonreciprocal phase shift, the relative phase difference is 0° in the forward propagation direction and 180° in the backward propagation direction, or vice versa, so that light goes into a bar or cross port depending on the propagation direction. The devices have advantages over previous designs in the use of inexpensive device components, simple alignment, minimal space requirement, and negligible polarization mode dispersion or polarization dependent loss. In addition, the devices can be made in a waveguide form with minimal loss and with high fabrication ease. An additional phase compensator and/or a variable attenuator can be integrated in order to relax the fabrication tolerances.
Abstract:
Polarization independent optical isolator/circulator devices based on Mach-Zehnder interferometers. The devices utilize either polarization splitting and nonreciprocal polarization conversion or nonreciprocal phase shift within the interferometric arm. For devices with nonreciprocal phase shift, the relative phase difference is 0° in the forward propagation direction and 180° in the backward propagation direction, or vice versa, so that light goes into a bar or cross port depending on the propagation direction. The devices have advantages over previous designs in the use of inexpensive device components, simple alignment, minimal space requirement, and negligible polarization mode dispersion or polarization dependent loss. In addition, the devices can be made in a waveguide form with minimal loss and with high fabrication ease. An additional phase compensator and/or a variable attenuator can be integrated in order to relax the fabrication tolerances.
Abstract:
An optical switch system for dropping a ROADM node is presented. The switch system includes an N×M structure having two layers. A first layer includes optical splitters, each splitter receiving a multiplexed input signal and outputting a first multiplexed output signal. A second layer includes switches receiving the first multiplexed output signals from the optical splitters and generating a second multiplexed output signal. The second multiplexed output signal is typically one of the first multiplexed output signals. An optional third layer, which includes optical filters, receives the second multiplexed output signal from the switches and produces a non-multiplexed, single-wavelength output signal.
Abstract:
The present invention is generally directed to optical signal devices that monitor the quality of an optical signal in a wavelength division multiplexing system by evaluating the information in the different wavelength channels.
Abstract:
Polarization independent optical isolator/circulator devices based on Mach-Zehnder interferometers. The devices utilize either polarization splitting and nonreciprocal polarization conversion or nonreciprocal phase shift within the interferometric arm. For devices with nonreciprocal phase shift, the relative phase difference is 0° in the forward propagation direction and 180° in the backward propagation direction, or vice versa, so that light goes into a bar or cross port depending on the propagation direction. The devices have advantages over previous designs in the use of inexpensive device components, simple alignment, minimal space requirement, and negligible polarization mode dispersion or polarization dependent loss. In addition, the devices can be made in a waveguide form with minimal loss and with high fabrication ease. An additional phase compensator and/or a variable attenuator can be integrated in order to relax the fabrication tolerances.
Abstract:
An optical switch system for dropping a ROADM node is presented. The switch system includes an N×M structure having two layers. A first layer includes optical splitters, each splitter receiving a multiplexed input signal and outputting a first multiplexed output signal. A second layer includes switches receiving the first multiplexed output signals from the optical splitters and generating a second multiplexed output signal. The second multiplexed output signal is typically one of the first multiplexed output signals. An optional third layer, which includes optical filters, receives the second multiplexed output signal from the switches and produces a non-multiplexed, single-wavelength output signal.