Abstract:
The present invention provides a selective coating of an endodontic file, in which the distal end of the file is uncoated or alternatively leaving the outermost part of the blades of the distal end portion uncoated. The distribution of the nanoparticles is thus non uniform along the surface of the file leaving only a part of the file coated. In the present invention, the distal end of the device being subjected to the highest torque is either uncoated at all, or has a coated core and uncoated blades.
Abstract:
Provided is a multilayered nanostructure including at least one first layered nanotube including at least one first inorganic material and having an inner void holding at least one second layered nanotube including at least one second inorganic material; where the at least on first nanotube and at least one second nanotube differ in at least one of structure and material. Further provided are processes for the manufacture of multilayered nanostructures and uses thereof.
Abstract:
The present invention provides an article, at least part of it being coated by inorganic fullerene-like (IF) nanoparticles or composite containing such nanoparticles. Preferably, the invention provides an article made of metal, for use in dentistry or medicine e.g. archwire, needle or catheter, having a friction-reducing film, and methods for coating such articles with a friction-reducing film.
Abstract:
A process and apparatus are presented for obtaining inorganic fullerene-like nanostructures. A metal oxide is evaporated at predetermined temperature conditions, and is swept towards a reacting zone, to which first and second gas phase reacting agents are concurrently swept. The evaporated metal oxide thus interacts with the first reacting agent and is converted into metal suboxide nanoparticles in the gas phase. The condensing metal suboxide nanoparticles interact with the second reacting agent in the gas phase resulting in substantially pure phase of the inorganic fullerene-like nanoparticles.
Abstract:
Nanotubes of transition metal chalcogenides as long as 0.2-20 microns or more, perfect in shape and of high crystallinity, are synthesized from a transition metal material, e.g. the transition metal itself or a substance comprising a transition metal such as an oxide, water vapor and a H2X gas or H2 gas and X vapor, wherein X is S, Se or Te, by a two-step or three-step method including first producing nanoparticles of the transition metal as long as 0.3 microns, and then annealing in a mild reducing atmosphere of the aforementioned gas or gas mixture. The transition metal chalcogenide is preferably WS2 or WSe2. Tips for scanning probe microscopy can be prepared from said long transition metal chalcogenide nanotubes.
Abstract:
A lubricating and shock absorbing materials are described, which are based on nanoparticles having the formula A1-x-Bx-chalcogenide. Processes for their manufacture are also described.
Abstract:
The present invention provides a process for obtaining fullerene-like metal chalcogenide nanoparticles, comprising feeding a metal precursor selected from metal halide, metal carbonyl, organo-metallic compound and metal oxyhalide vapor into a reaction chamber towards a reaction zone to interact with a flow of at least one chalcogen material in gas phase, the temperature conditions in said reaction zone being such to enable the formation of the fullerene-like metal chalcogenide nanoparticles product. The present invention further provides novel IF metal chalcogenides nanoparticles with spherical shape and optionally having a very small or no hollow core exhibiting excellent tribological behaviour. The present invention further provides an apparatus for preparing various IF nanostructures.
Abstract:
The present invention provides a process for obtaining fullerene-like metal chalcogenide nanoparticles, comprising feeding a metal precursor selected from metal halide, metal carbonyl, organo-metallic compound and metal oxyhalide vapor into a reaction chamber towards a reaction zone to interact with a flow of at least one chalcogen material in gas phase, the temperature conditions in said reaction zone being such to enable the formation of the fullerene-like metal chalcogenide nanoparticles product. The present invention further provides novel IF metal chalcogenides nanoparticles with spherical shape and optionally having a very small or no hollow core exhibiting excellent tribological behaviour. The present invention further provides an apparatus for preparing various IF nanostructures.
Abstract:
A process and apparatus are presented for obtaining inorganic fullerene-like nanostructures. A metal oxide is evaporated at predetermined temperature conditions, and is swept towards a reacting zone, to which first and second gas phase reacting agents are concurrently swept. The evaporated metal oxide thus interacts with the first reacting agent and is converted into metal suboxide nanoparticles in the gas phase. The condensing metal suboxide nanoparticles interact with the second reacting agent in the gas phase resulting in substantially pure phase of the inorganic fullerene-like nanoparticles.
Abstract:
Nanotubes of transition metal chalcogenides as long as 0.2-20 microns or more, perfect in shape and of high crystallinity, are synthesized from a transition metal material, e.g., the transition metal itself or a substance comprising a transition metal such as an oxide, water vapor and a H2X gas or H2 gas and X vapor, wherein X is S, Se or Te, by a two-step or three-step method. The transition metal chalcogenide is preferably WS2 or WSe2. Tips for scanning probe microscopy can be prepared from said long transition metal chalcogenide nanotubes.