Abstract:
A pair of elevator cars (10, 11) traveling in the same hoistway have their positions sensed (20-23, 29-32) to provide for each a position signal (35, 37) from which velocity signals (64, 65) are derived; lookup tables (66, 61) of safe stopping distance (B, S) for braking and safeties are formed as a function of all possible combinations of velocity (V(U), V(L)) of said cars. Comparison of safe stopping distances for contemporaneous velocities of said cars with actual distance between said cars provides signals (85, 98, 99) to drop the brakes (49, 50) of one or more of the cars, and provides signals (82) to engage the safeties (18, 18a, 19, 19a) of all cars if the cars become closer or if acceleration detectors (117, 118) determine a car to be in freefall.
Abstract:
The device for controlling movement of a plurality of elevator cars in a single hoistway includes a door monitor module (46) that facilitates controlling movement of elevator cars (22, 24). The door monitor module (46) is configured to determine when at least one door (30) along a hoistway (26) is open. The door monitor module (46) places a first relay (52) in a selected operative state if a first elevator car (22) is stopped at a landing corresponding to the at least one open door. The door monitor module (46) places a second relay (56) in a selected operative state if a second elevator car (24) is stopped at a landing corresponding to the at least one open door. The door monitor module (46) is also configured to place both relays (52, 56) into the selected operative state if neither of the elevator cars (22, 24) is stopped at a landing corresponding to an open door (30) along a hoistway (26).
Abstract:
A platform stabilization coupler for transmitting acceleration forces to an elevator platform disposed on an elevator car frame is presented. The coupler includes a vibration member having a first surface disposed in fixed relation to either one of the elevator car frame and the platform. The coupler additionally includes a linear bearing disposed in fixed relation to a second surface of the vibration member. The bearing is disposed in moveable relation with the other of the elevator car frame and the platform to allow substantially vertical movement of the platform relative to the elevator car frame. The vibration member and linear bearing provide a transmission path for the lateral acceleration forces from the elevator car frame to the platform.
Abstract:
Elevator cabs are transferred between elevators, which may be shuttles, in various levels of a building, such as transport floors, in response to car calls registered in the cabs and hall calls registered on the transport floors. The cabs may be transferred from carriages or bogeys onto elevator car frames in a lateral direction, which is perpendicular to the motion of the cab on a carriage or bogey, or in a longitudinal direction which is the same as the direction of motion of a cab on a carriage or bogey. The horizontal/vertical control and transfer may be effected in response to the arrival at transport floors of elevators having cabs therein, or in response to the arrival at an elevator of a bogey carrying a cab which must be transported between a transport floor on one level of a building and a transport floor on another level of a building, in order to serve the need of a car call registered therein or a hall call. The horizontal transportation may occur on transport floors within a building, or may extend between different building segments or between different buildings.
Abstract:
A plurality of express shuttle elevators S1-S4 exchange elevator cabs at a transfer floor 26 with local elevators L1-L10 by means of a carriage 107, the casters of which 93 are guided by tracks 70-83. The transfer floor has linear induction motor (LIM) primary segments 60-67 disposed on the transfer floor; the carriage has a LIM secondary 128 thereon for propulsion. The carriages can be locked 91, 92 to the transfer floor for loading, and cabs can be locked 131 onto the carriages for stability when being moved. A controller (FIGS. 10-13) keeps track of the progress of the cabs from one elevator to another.
Abstract:
An elevator cab X is moved from a hoistway TL to a car frame (11) simultaneously with moving a cab Y from the car frame (11) onto a landing TR. Double deck car frames (11a) may be utilized with cars P, Q going in the opposite direction of cars X, Y as they are transferred between the car frame and corresponding landings.
Abstract:
Horizontally moveable elevator cabs A-E are transferrable between the car frames (72) of two elevators HI, LO in adjacent hoistways which extend between at least three levels (GND, MID, SKY) of a building, and between the car frames and landings L, R at said levels. The vertical movement of cars in the hoistways is synchronized, and transfer of elevator cabs between landings and car frames is simultaneous.
Abstract:
A socket plug assembly (44) on an elevator cab (10) may engage with complimentary socket plug assemblies (46) on either of two car frames (11, 13) when it is horizontally moved therebetween. A socket plug assembly (44a) on a horizontally moveable elevator cab may have a horizontal interface with a complimentary socket plug assembly (45b) mounted on an elevator car frame or landing, and one of them is moved vertically to cause engagement with the other. Socket plug assemblies (169) tethered to a cab (10) by means of an umbilical cord (168) is engageable with socket plug assemblies (170, 171) on booms (172, 173) on the elevator car frames (21, 22) or landings. An uninterruptible power supply (50) maintains power when the cab is unplugged; a transceiver (51) on the cab maintains communications with a transceiver (62) in the building when the cab is unplugged.
Abstract:
An operational controller is located in the elevator car, and a mobile transceiver, also located in the car, is connected to the operational controller, which includes a microprocessor that controls the transceiver. A stationary transceiver is located in the lobby, and the two transceivers are connected over two pairs of wires in the traveling cable. These transceivers communicate by dual tone combinations, each combination identifying a hall button, a hall lantern, and a position indicator in the lobby.
Abstract:
A platform stabilization coupler for transmitting acceleration forces to an elevator platform disposed on an elevator car frame is presented. The coupler includes a vibration member having a first surface disposed in fixed relation to either one of the elevator car frame and the platform. The coupler additionally includes a linear bearing disposed in fixed relation to a second surface of the vibration member. The bearing is disposed in moveable relation with the other of the elevator car frame and the platform to allow substantially vertical movement of the platform relative to the elevator car frame. The vibration member and linear bearing provide a transmission path for the lateral acceleration forces from the elevator car frame to the platform.