Abstract:
A system and method transmits graphic data received at varying frequencies at a fixed data rate. The frequency dependent data and associated data clock signal are received and the frequency dependent data is converted to frequency independent data. A ratio of a number of data clock cycles to a number of reference clock cycles is determined and transmitted. The frequency independent data and header data are transmitted, at a fixed rate, to a receiver, the fixed rate being a frequency greater than the frequency of the associated data clock signal. The received the frequency independent data is converted to frequency dependent data based upon the received determined ratio. The communication channel may include an optical fiber and a tension member wherein control data is transmitted along the tension member and graphic data is transmitted along the optical fiber.
Abstract:
Multiple systems and methods for accurately regenerating interlaced video signals that are transmitted using DSI is provided. In some embodiments, multiple types of VSYNC packets may be defined and used in encoding packets depending when the edge of a VSYNC pulse does or does not coincide with the start of a HSYNC pulse. These types of VSYNC packets may be distinguished in some embodiments by either create new VSYNC packet types, or encoding unused bits in existing DSI packets. In other embodiments, a filter may be used to detect and correct HSYNC frequency distortions caused during the regeneration of interlaced video signals decoded from DSI packets.
Abstract:
A collection device for a testing system includes a central volume and a trough, adjacent the central volume. The trough is configured with a pour spout such that, as fluid is poured from the collection device, a controlled volume remains in the trough. The trough is configured to receive a portion of a test kit and to apply the controlled volume of the sample to test strips within the test kit. The trough can also include apertures in the wall between the trough and the central volume which allow excess sample to flow back into the cup when the cup is placed upright after pouring and when the test kit is inserted into the trough.
Abstract:
A media system is provided having synchronized multiple camera signals of at least one event or activity for transmission over the internet to end users for selective display and/or manipulation. The media system may be used in connection with a variety of events or activities, including without limitation concerts, sports events, political events, sales events, movie premiers, public events, training events and religious events. A method is also provided having synchronized camera signals of at least one event or activity for transmission over the internet to end users for selective display and/or manipulation. A media player is also provided for processing synchronized camera signals representing different views of at least one event or activity and providing end users of the media player the options of selectively displaying and/or manipulating at least one of the views at will.
Abstract:
A system and method transmits graphic data received at varying frequencies at a fixed data rate. The frequency dependent data and associated data clock signal are received and the frequency dependent data is converted to frequency independent data. A ratio of a number of data clock cycles to a number of reference clock cycles is determined and transmitted. The frequency independent data and header data are transmitted, at a fixed rate, to a receiver, the fixed rate being a frequency greater than the frequency of the associated data clock signal. The received the frequency independent data is converted to frequency dependent data based upon the received determined ratio. The communication channel may include an optical fiber and a tension member wherein control data is transmitted along the tension member and graphic data is transmitted along the optical fiber.
Abstract:
Multiple systems and methods for accurately regenerating interlaced video signals that are transmitted using DSI is provided. In some embodiments, multiple types of VSYNC packets may be defined and used in encoding packets depending when the edge of a VSYNC pulse does or does not coincide with the start of a HSYNC pulse. These types of VSYNC packets may be distinguished in some embodiments by either create new VSYNC packet types, or encoding unused bits in existing DSI packets. In other embodiments, a filter may be used to detect and correct HSYNC frequency distortions caused during the regeneration of interlaced video signals decoded from DSI packets.
Abstract:
A media system is provided having synchronized multiple camera signals of at least one event or activity for transmission over the internet to end users for selective display and/or manipulation. The media system may provide that end users are able to select and view and manipulate one or more of the multiple streaming video signals at will. The media system may be used in connection with a great variety of events or activities, including without limitation concerts, sports events, political events, sales events, movie premiers, public events, training events and religious events. A method is also provided having synchronized camera signals of at least one event or activity for transmission over the internet to end users for selective display and/or manipulation. The multiple camera signals are provided to end users for selective display and/or manipulation by end users. A media player is also provided for processing synchronized camera signals representing different views of at least one event or activity and providing end users of the media player the options of selectively displaying and/or manipulating at least one of the views at will.
Abstract:
A system and method transmits graphic data received at varying frequencies at a fixed data rate. The frequency dependent data and associated data clock signal are received and the frequency dependent data is converted to frequency independent data. A ratio of a number of data clock cycles to a number of reference clock cycles is determined and transmitted. The frequency independent data and header data are transmitted, at a fixed rate, to a receiver, the fixed rate being a frequency greater than the frequency of the associated data clock signal. The received the frequency independent data is converted to frequency dependent data based upon the received determined ratio. The communication channel may include an optical fiber and a tension member wherein control data is transmitted along the tension member and graphic data is transmitted along the optical fiber.