Abstract:
An autonomous vehicle platform system and method configured to perform various in-season management tasks, including selectively applying fertilizer, mapping growth zones and seeding cover crop within an agricultural field, while self-navigating between rows of planted crops and beneath the canopy of the planted crops on the uneven terrain of an agricultural field, allowing for an ideal in-season application of fertilizer to occur once the planted crop is well established and growing rapidly, in an effort to limit the loss of fertilizer.
Abstract:
An autonomous vehicle platform system and method configured to perform various in-season management tasks, including selectively applying fertilizer, mapping growth zones and seeding cover crop within an agricultural field, while self-navigating between rows of planted crops and beneath the canopy of the planted crops on the uneven terrain of an agricultural field, allowing for an ideal in-season application of fertilizer to occur once the planted crop is well established and growing rapidly, in an effort to limit the loss of fertilizer.
Abstract:
A multi-lobed wheel adapted to be mounted to an agricultural platform for traversal of an agricultural field generally traverse to adjacent rows of planted crops without crushing the individual plants. The multi-lobed wheel having a wheel hub including a central axis on which the multi-lobed wheel is configured to rotate and a plurality of spaced apart lobes defining an outer perimeter configured to make ground engaging contact with the agricultural field, the outer perimeter including structure presenting a plurality of gaps between the plurality of spaced apart lobes, the gaps shaped and sized to provide sufficient clearance for individual plants within a planted crop row so as to enable the multi-lobed wheel to pass over a planted crop row without crushing the individual plants therein.
Abstract:
An autonomous vehicle platform and system for selectively performing an in-season management task in an agricultural field while self-navigating between rows of planted crops, the autonomous vehicle platform having a vehicle base with a width so dimensioned as to be insertable through the space between two rows of planted crops, the vehicle base having an in-season task management structure configured to perform various tasks, including selectively applying fertilizer, mapping growth zones and seeding cover crop within an agricultural field.
Abstract:
A multi-lobed wheel adapted to be mounted to an agricultural platform for traversal of an agricultural field generally traverse to adjacent rows of planted crops without crushing the individual plants. The multi-lobed wheel having a wheel hub including a central axis on which the multi-lobed wheel is configured to rotate and a plurality of spaced apart lobes defining an outer perimeter configured to make ground engaging contact with the agricultural field, the outer perimeter including structure presenting a plurality of gaps between the plurality of spaced apart lobes, the gaps shaped and sized to provide sufficient clearance for individual plants within a planted crop row so as to enable the multi-lobed wheel to pass over a planted crop row without crushing the individual plants therein.
Abstract:
A multi-lobed wheel adapted to be mounted to an agricultural platform for traversal of an agricultural field generally traverse to adjacent rows of planted crops without crushing the individual plants. The multi-lobed wheel having a wheel hub including a central axis on which the multi-lobed wheel is configured to rotate and a plurality of spaced apart lobes defining an outer perimeter configured to make ground engaging contact with the agricultural field, the outer perimeter including structure presenting a plurality of gaps between the plurality of spaced apart lobes, the gaps shaped and sized to provide sufficient clearance for individual plants within a planted crop row so as to enable the multi-lobed wheel to pass over a planted crop row without crushing the individual plants therein.
Abstract:
An autonomous vehicle platform and system for selectively performing an in-season management task in an agricultural field while self-navigating between rows of planted crops, the autonomous vehicle platform having a vehicle base with a width so dimensioned as to be insertable through the space between two rows of planted crops, the vehicle base having an in-season task management structure configured to perform various tasks, including selectively applying fertilizer, mapping growth zones and seeding cover crop within an agricultural field.
Abstract:
A method of using an unmanned agricultural robot to generate an anticipatory geospatial data map of the positions of annual crop rows planted within a perimeter of an agricultural field, the method including the step of creating a geospatial data map of an agricultural field by plotting actual annual crop row positions in a portion of the geospatial data map that corresponds to a starting point observation window, and filling in a remainder of the geospatial data map with anticipated annual crop row positions corresponding to the annual crop rows outside of the starting point observation window, and refining the geospatial data map by replacing the anticipated annual crop row positions with measured actual annual crop row positions when an unexpected obstacle is encountered.
Abstract:
An autonomous vehicle platform and system for selectively performing an in-season management task in an agricultural field while self-navigating between rows of planted crops, the autonomous vehicle platform having a vehicle base with a width so dimensioned as to be insertable through the space between two rows of planted crops, the vehicle base having an in-season task management structure configured to perform various tasks, including selectively applying fertilizer, mapping growth zones and seeding cover crop within an agricultural field.
Abstract:
A method of using an unmanned agricultural robot to generate an anticipatory geospatial data map of the positions of annual crop rows planted within a perimeter of an agricultural field, the method including the step of creating a geospatial data map of an agricultural field by plotting actual annual crop row positions in a portion of the geospatial data map that corresponds to a starting point observation window, and filling in a remainder of the geospatial data map with anticipated annual crop row positions corresponding to the annual crop rows outside of the starting point observation window, and refining the geospatial data map by replacing the anticipated annual crop row positions with measured actual annual crop row positions when an unexpected obstacle is encountered.