Abstract:
An apparatus, method, communications device and computer readable medium for phase aligning two clocks and providing a graceful switch between active and standby circuitry is disclosed. A reporting circuit receives a measured phase difference between a first clock signal and a second clock signal, a selection circuit selects a configurable phase adjustment according to the measured phase difference, and a granularity adjustment circuit adds the configurable phase adjustment to the first clock signal generating a phase adjusted clock signal. The measured phase difference is compared to a maximum allowable phase difference value such that a phase adjustment is added to the first clock signal if the measured phase difference is greater than the maximum allowable phase difference value. The process is repeated until the measured phase difference is not greater than the maximum allowable phase difference value.
Abstract:
A telecommunications channel unit card including a subscriber bus interface for communicating subscriber bus signals with a digital loop carrier matrix, wideband channels for communicating wideband telecommunications signals with the subscriber bus interface and an external network, and at least one high-bit-rate digital subscriber line (HDSL) module capable of being coupled selectively to at least one of the wideband channels to facilitate HDSL-based communications between the telecommunications channel unit card and the external network.
Abstract:
A set of network communications devices shares available power among themselves to meet overall system power loading. An individual device is configured to include a local power supply delivering power to a local power bus at a local supply voltage varied in response to a voltage control signal. A protection component is connected between the local power bus and an external power cable used to connect the device to another device for sharing power. The protection component provides an interruptible low-impedance DC path for carrying current based on direction and magnitude of a voltage difference between the local power bus and the external power cable. Control circuitry is used to: (a) drive a current-sharing bus connected among the devices to influence a value of a system current-sharing signal indicating a level of system power loading among the devices; (b) generate a difference signal indicating a difference between local power loading of the local power supply and the system power loading reflected by the system current-sharing signal; and (c) generate the voltage control signal based on the difference signal to achieve a predetermined sharing of the system power loading by the local power supply.
Abstract:
Two T1 signals are mapped onto a subscriber bus (26) in a subscriber loop equipment (10) for transport between a bank control unit (20) and channel units (22), for example. The data channels and the signaling and control channels of the first T1 signal are mapped onto a first data stream, and the data channels and the signaling and control channels of the second T1 signal are mapped onto a second data stream. The data streams are bit-interleaved for transport on the subscriber bus (26).
Abstract:
In a subscriber loop equipment (10) having a subscriber bus (26), there is provided an odd data stream carrying a first set of data time slots of an E1 signal and a first set of signaling and control time slots of the E1 signal, and an even data stream carrying a second set of data time slots of the E1 signal and a second set of signaling and control time slots of the E1 signal. The odd and even data streams are bit-interleaved and transported on the subscriber bus (26).
Abstract:
A frame timing adjustment apparatus is disclosed. The apparatus includes an ingress framing unit, an egress framing unit coupled to the ingress framing unit, and a framing control unit coupled to control the ingress framing unit and the egress framing unit. The ingress framing unit is configured to generate an adjusted frame by virtue of being configured to adjust a position of information within a frame. The egress framing unit is configured to frame on the adjusted frame. The framing control unit is coupled to control the ingress framing unit to generate the adjusted frame and the egress framing unit to frame the adjusted frame.
Abstract:
A phase adjustment circuit has a signal path having a plurality of phase adjustment elements coupled together. Each of the phase adjustment elements of the plurality has a first path and a second path. The second path of each of the phase adjustment elements of the plurality adds a smaller amount of phase adjustment to the signal path than the first path of each of the phase adjustment elements of the plurality. The amount of phase adjustment added by each of the phase adjustment elements of the plurality is cumulative. The phase adjustment circuit also has a selection circuit coupled to each of the phase adjustment elements of the plurality to provide selection of either the first path or the second path of each of the phase adjustment elements of the plurality.
Abstract:
A set of network communications devices shares available power among themselves to meet overall system power loading. An individual device is configured to include a local power supply delivering power to a local power bus at a local supply voltage varied in response to a voltage control signal. A protection component is connected between the local power bus and an external power cable used to connect the device to another device for sharing power. The protection component provides an interruptible low-impedance DC path for carrying current based on direction and magnitude of a voltage difference between the local power bus and the external power cable. Control circuitry is used to: (a) drive a current-sharing bus connected among the devices to influence a value of a system current-sharing signal indicating a level of system power loading among the devices; (b) generate a difference signal indicating a difference between local power loading of the local power supply and the system power loading reflected by the system current-sharing signal; and (c) generate the voltage control signal based on the difference signal to achieve a predetermined sharing of the system power loading by the local power supply.
Abstract:
An apparatus, method, communications device and computer readable medium for phase aligning two clocks and providing a graceful switch between active and standby circuitry is disclosed. A reporting circuit receives a measured phase difference between a first clock signal and a second clock signal, a selection circuit selects a configurable phase adjustment according to the measured phase difference, and a granularity adjustment circuit adds the configurable phase adjustment to the first clock signal generating a phase adjusted clock signal. The measured phase difference is compared to a maximum allowable phase difference value such that a phase adjustment is added to the first clock signal if the measured phase difference is greater than the maximum allowable phase difference value. The process is repeated until the measured phase difference is not greater than the maximum allowable phase difference value.