Abstract:
The switching power source circuit (11) for the solid-state laser (100) excited by a semiconductor laser (101) uses a higher switching frequency than the relaxation oscillation (fRO) of the solid-state laser so that the optical noises due to the switching noises or ripples in the output voltage of the switching power source circuit can be minimized. When the voltage drop caused by a semiconductor power device (Q2) is forwarded to a feedback terminal (11b) of the switching power source circuit, even when the forward voltage of the semiconductor laser should vary, the output voltage of the switching power source circuit can be regulated to a value suitable for the driving of the semiconductor laser, and the heat generation from the semiconductor power device can be minimized.
Abstract:
A diode laser module includes a laser diode (1), an anamorphic prism pair (5) consisting of a pair of prisms (3, 4) having mutually different apex angles and/or made of material having mutually different refractive indices, and a partial reflective mirror (6; 16) disposed on a side of the anamorphic prism pair away from the laser diode and having a planar or spherical surface facing the anamorphic prism pair and coated with partial reflective coating (6a; 16a). The wavelength of the laser output can be changed by adjusting the position of the partial reflective mirror.
Abstract:
A light deflector for deflecting a propagation direction of laser includes: a first metallic piece and a second metallic piece spaced apart from each other; and a transparent medium and an electronic cooling element disposed between the first metallic piece and the second metallic piece such that each of the transparent medium and the electronic cooling element is in contact with the first metallic piece and the second metallic piece. The electronic cooling element creates a temperature difference between the first metallic piece and the second metallic piece to vary a refractive index of the transparent medium.
Abstract:
A short-wavelength infrared imaging lens includes first and second lens groups arranged in order from an object side. The first lens group has a negative refractive power as a whole. The second lens group has a positive refractive power as a whole and includes at least one positive lens that satisfies following conditional expressions (1) and (2): V2p>40 (1) N2p>1.7 (2) Here, N2p is a refractive index N [1.53] of the positive lens at a wavelength of 1.53 μm, and the Abbe number V2p is an Abbe number of the positive lens in a short-wavelength infrared range and is defined as (N [1.53]−1)/(N [0.9]−N [2.325]) when refractive indexes of the at least one positive lens at wavelengths of 0.9 μm, 1.53 μm, and 2.325 μm are represented by N [0.9], N [1.53], and N [2.325], respectively.
Abstract:
A laser system includes: a laser light source; a light detector configured to output an electric current proportional to an output laser light of the laser light source; a resistor network configured to convert the electric current output from the light detector to a monitor voltage; and a regulator configured to control an intensity of the output laser light based on a comparison between the monitor voltage and a voltage corresponding to a control target value, wherein the resistor network comprises at least two branch circuits connected in parallel with each other, and the branch circuits include respective digital potentiometer circuits commonly formed in a single device.
Abstract:
A semiconductor laser device with external resonator with stable longitudinal mode regardless of variation of drive current is disclosed. The device includes: a semiconductor light-emitting element having a pair of end faces with a light emitting section disposed therebetween, and an external resonator configured to oscillate light emitted from the semiconductor light-emitting element, the external resonator being formed by a resonator mirror disposed outside the semiconductor light-emitting element and one of the pair of end faces that is farther from the resonator mirror, wherein, as the semiconductor light-emitting element, a semiconductor light-emitting element having a structure which does not oscillate light emitted therefrom by itself is used. The device further includes a wavelength control element disposed in the optical path within the external resonator and configured to select a wavelength range of the light, and a driver circuit configured to perform fast modulation drive of the semiconductor light-emitting element.
Abstract:
A single longitudinal mode diode laser module including a laser diode (1) and an external resonator using a volume holographic grating (3) having a prescribed reflective bandwidth is made amenable to automatic power control by controlling the temperature of the laser diode such that the laser power may be allowed to increase monotonically with an increase in the input current. Therefore, the output laser power can be controlled at a constant level by automatic power control or by adjusting the input current while monitoring the laser power at any desired level of the laser power.