Abstract:
A method of forming a semiconductor device can be provided by forming an opening that exposes a surface of an elevated source/drain region. The size of the opening can be reduced and a pre-amorphization implant (PAI) can be performed into the elevated source/drain region, through the opening, to form an amorphized portion of the elevated source/drain region. A metal-silicide can be formed from a metal and the amorphized portion.
Abstract:
Disclosed are a polymer electrolyte membrane for fuel cells and a membrane electrode assembly and fuel cell including the same. The polymer electrolyte membrane includes a fluorine-based cation exchange resin having proton conductivity and fibrous nanoparticles having a hydrophilic group. By using the fluorine-based cation exchange resin having proton conductivity and the fibrous nanoparticles having a hydrophilic group in combination, performance of a fuel cell including the polymer electrolyte membrane is not deteriorated and the polymer electrolyte membrane prevents gases from permeating thereinto and has enhanced durability for extended use. A fuel cell including the above-described polymer electrolyte membrane is provided.
Abstract:
Provided are a tri-block copolymer and an electrolyte membrane prepared therefrom. The tri-block copolymer has a structure of polar moiety-containing copolymer block/non-polar moiety-containing copolymer block/polar moiety-containing copolymer block, or non-polar moiety-containing copolymer block/polar moiety-containing copolymer block/non-polar moiety-containing copolymer block, and is useful for an electrolyte membrane for fuel cells. The electrolyte membrane for fuel cells prepared from the tri-block copolymer exhibits superior dimensional stability and excellent fuel cell performance.
Abstract:
A thin film forming apparatus according to the embodiment includes a plurality of vapor deposition sources respectively separated from each other, a plurality of nozzle bodies connected to upper portions of the respective vapor deposition sources, and a plurality of nozzles connected to upper portions of the respective nozzle bodies. A nozzle hole of each of the nozzles is formed on a same vapor deposition line. Thus, according to the embodiment, the first organic material and the second organic material respectively sprayed through a first nozzle hole and a second nozzle hole can be uniformly mixed by disposing the first nozzle hole and the second nozzle on the same vapor deposition line.
Abstract:
Disclosed are a polymer electrolyte membrane for fuel cells and a membrane electrode assembly and fuel cell including the same. The polymer electrolyte membrane includes a fluorine-based cation exchange resin having proton conductivity and fibrous nanoparticles having a hydrophilic group. By using the fluorine-based cation exchange resin having proton conductivity and the fibrous nanoparticles having a hydrophilic group in combination, performance of a fuel cell including the polymer electrolyte membrane is not deteriorated and the polymer electrolyte membrane prevents gases from permeating thereinto and has enhanced durability for extended use. A fuel cell including the above-described polymer electrolyte membrane is provided.
Abstract:
An apparatus and method for mitigating inter-cell interference in a Multiple Input Multiple Output (MIMO) system are provided. The method includes allocating a serving band for providing service to at least one Mobile Station (MS) through scheduling, receiving at least one request set for at least one neighboring cell, from at least one MS, updating the at least one request set considering a serving band of each MS, and transmitting the updated at least one request set to the at least one neighboring cell. The request set includes at least one piece of information among a band and Precoding Matrix Index (PMI) for making a use restriction request to a neighboring cell that exerts interference on an MS.
Abstract:
A method of fabricating a metal silicide layer includes forming a metal layer on a substrate, and forming a pre-metal silicide layer by reacting the substrate with the metal layer by performing a first annealing process on the substrate. The method also includes implanting silicon into the substrate using a gas cluster ion beam (GCIB) process, and changing the pre-metal silicide layer into a metal silicide layer by performing a second annealing process on the substrate.
Abstract:
Provided are a tri-block copolymer and an electrolyte membrane prepared therefrom. The tri-block copolymer has a structure of polar moiety-containing copolymer block/non-polar moiety-containing copolymer block/polar moiety-containing copolymer block, or non-polar moiety-containing copolymer block/polar moiety-containing copolymer block/non-polar moiety-containing copolymer block, and is useful for an electrolyte membrane for fuel cells. The electrolyte membrane for fuel cells prepared from the tri-block copolymer exhibits superior dimensional stability and excellent fuel cell performance.
Abstract:
A transmission/reception apparatus and a method thereof in a codebook-based multiple antenna system is provided. In a transmission method in a codebook-based Multiple Input Multiple Output (MIMO) system, feedback information is received from a receiver. A downlink Open-Loop Single User MIMO (OL SU-MIMO) codebook subset is determined within a base cookbook based on the feedback information. At least one data stream is transmitted via at least one antenna using the determined downlink OL SU-MIMO codebook subset.
Abstract:
An organic light emitting device and a manufacturing method thereof is provided. The organic light emitting device includes a first pixel that displays a first color, a second pixel that displays a second color, and a third pixel that displays a third color. The first pixel, the second pixel and the third pixel together form one pixel. Each of the first pixel, second pixel, and third pixel includes a pixel electrode having a transflective electrode, an organic emission layer on the pixel electrode that displays the first color, a common electrode on the third color organic emission layer, and a transparent supplementary member between the pixel electrode and the common electrode.