Abstract:
Adequate correction processing is performed on image data based on the degree of ink concentration that occurs even. An image processing apparatus having: acquisition unit for acquiring multi-value image data and a first parameter related to the degree of concentration of ink; first generation unit for generating corrected data by correcting the multi-value data that is to be printed for the first pixel based on the multi-value data that is to printed in the first pixel and a first parameter; and second generation unit for generating the first parameter and a second parameter that indicates the degree of ink concentration of the plurality of nozzles when printing a second pixel that is printed by the nozzles next to the first pixel.
Abstract:
A vehicle seat sliding device includes: a first rail adapted to be fixed to one of a vehicle floor and a seat; a second rail adapted to be fixed to the other one of the vehicle floor and the seat, and coupled to the first rail in a relatively movable manner; an engagement member, which selectively limits and permits the relative movement of the first and the second rails; an operation member configured such that operating force to cancel the restriction of the relative movement in the second rail is transmitted to the engagement member; and a cover mounted on the first end of the second rail to close the first end. The cover has an engagement piece, which engages with a support wall provided in the second rail and restricts the pivoting of the cover when pressed against the operation member.
Abstract:
A printing device using a print head ejecting ink from a plurality of nozzles to print ink dots of a plurality of dot diameters, includes a print-characteristic acquisition unit obtaining print characteristic information on dot diameters of ink dots to be printed per each predetermined portion of the plurality of nozzles, a distribution ratio determination unit determining a distribution ratio for distributing image data to the predetermined portions of the plurality of nozzles based on the information, a dot print position determination unit quantizing the image data to determine a dot print position based on the image data and sizes and an array of thresholds; and a plurality of masks based on dot distribution order determined according to the distribution ratio, distributing printing of each of the ink dots of the plurality of dot diameters to the dot print position determined by the dot print position determination unit.
Abstract:
Adequate correction processing is performed on image data based on the degree of ink concentration that occurs even. An image processing apparatus having: acquisition unit for acquiring multi-value image data and a first parameter related to the degree of concentration of ink; first generation unit for generating corrected data by correcting the multi-value data that is to be printed for the first pixel based on the multi-value data that is to printed in the first pixel and a first parameter; and second generation unit for generating the first parameter and a second parameter that indicates the degree of ink concentration of the plurality of nozzles when printing a second pixel that is printed by the nozzles next to the first pixel.
Abstract:
A control unit 6 causes a vertical scanning circuit 3 to cyclically select any one-dimensional pixel line from among pixel lines 21 to 23 each time a prescribed H period elapses, and controls a read circuit 5 and a horizontal scanning circuit 4 so as to read out pixel signals of an object which has been exposed by the selected pixel line. The control unit 6 further controls a vertical movement unit 8 in such a manner that the scanning speed S satisfies S=P/4H, where P is the arrangement pitch in the vertical direction of the pixel lines 21 to 23 and H is the H period.
Abstract translation:每当经过规定的H时间时,控制单元6使垂直扫描电路3循环选择像素行21至23中的任何一维像素行,并且控制读取电路5和水平扫描电路4以便读取 由所选择的像素线曝光的对象的输出像素信号。 控制单元6进一步控制垂直移动单元8,使得扫描速度S满足S = P / 4H,其中P是像素线21至23的垂直方向上的排列间距,H是H周期 。
Abstract:
A lifting mechanism of a vehicle seat for adjusting a seating height position of the vehicle seat is provided. The lifting mechanism includes a lifter link having one side that is rotatably shaft-supported to a floor-side member provided on a vehicle floor and the other side that rotatably shaft-supports a frame member of a seating-side configuring part for seating; and a stopper link having one side that is rotatably shaft-supported to the floor-side member and the other side that is loosely fitted in a long hole formed in the lifter link. A rotation of the lifter link in a rear direction is restrained by a loosely fitted portion of the stopper link contacting an inner circumferential part of the long hole. A rotation of the lifter link in a front direction is restrained by a restraining contract part provided to the lifter link contacting a stopper part provided to the floor-side member. The restraining contact part is provided at a further outer side in a rotationally radial direction than a position of a front-side end portion of the long hole, with respect to a rotatable shaft support point of the one side of the lifter link.
Abstract:
At least two drain ohmic contacts are arranged to intersect with an active area. A source ohmic contact is arranged between the drain ohmic contacts. A drain coupling portion on an element separating area couples ends of the drain ohmic contacts on the same side thereof. A gate power supply wiring on the element separating area couples gate fingers at the end thereof on the opposite side of the arrangement side of the drain coupling portion. A gate edge coupling portion couples two gate fingers adjacent to each other, sandwiching the source ohmic contact at the end thereof on the arrangement side of the drain coupling portion. The gate edge coupling portion does not intersect with the drain ohmic contact and the drain coupling portion.
Abstract:
A necessary amount of suppression ink is applied to each portion of an ink absorber in a short time and in an efficient manner. For that end, carriage scan is performed while changing an ejection condition of suppression ink so as to change an application amount of suppression ink according to a position of an ink absorber. This makes it possible to appropriately apply suppression ink, which suppresses accumulation of ink, to the entire area of the ink absorber by carriage scan in a short time even if an application amount of accumulation ink differs from part to part of the ink absorber.
Abstract:
A fuel injection amount control apparatus controlling an amount of fuel supplied to an internal combustion engine is disclosed. An intake passage extends from the engine, and the intake passage is branched into a plurality of branch passages in an upstream section. The apparatus includes a plurality of intake air temperature sensors and an ECU. Each of the intake air temperature sensors is provided in one of the intake passages and detects an intake air temperature in the corresponding intake passage. The ECU selects an intake air temperature that most directly expresses the engine state or the environment from the intake air temperatures detected by the intake air temperature sensors. The ECU controls the amount of the fuel supplied to the engine by using the selected intake air temperature.
Abstract:
An output signal of a knock sensor is converted by an A/D conversion part in a specified knock determination range. In a time-frequency analysis part, data of frequency, time, and vibration intensity are extracted at the same time from an output signal of the knock sensor and the time-varying patterns of vibration intensities in multiple frequency ranges are extracted. A knock determination part computes lengths (crank angle, or time period) from a starting point to a latest terminating point of the time-varying patters of vibration intensity in at least two frequency ranges, which rise at a same time. The knock determination part executes a knock determination based on whether the lengths are greater than a knock determination threshold.