Abstract:
A fuel cell stack includes a plurality of unit cells, bypass resistors, and connective resistors. The unit cells are connected in series and/or in parallel. The connected resistors are disposed between the unit cells connected in series and disconnected by heat due to resistance at a small current value in comparison to an current collector. The bypass resistors are connected in parallel to the unit cells or the unit cells connected in parallel.
Abstract:
A fuel cell stack and a manufacturing method thereof are disclosed. The fuel cell stack has at least one unit cell. The unit cell includes a first electrode collector, a first electrode layer formed on the first electrode collector, an electrolyte layer formed on the first electrode layer, a second electrode layer formed on the electrolyte layer, and a second electrode collector formed on the second electrode layer. At least one of the first and second electrode collectors may include a porous metal substrate having a density in a range from about 800 kg/m3 to about 1600 kg/m3 and a plurality of metal wires electrically connected to the porous metal substrate. The density of an electrode collector may be optimized to have an improved contact state between an electrode and the electrode collector. During operation, the fuel cell stack may thus have enhanced performance characteristics.
Abstract translation:公开了一种燃料电池堆及其制造方法。 燃料电池堆具有至少一个单电池。 单元电池包括第一电极集电体,形成在第一电极集电体上的第一电极层,形成在第一电极层上的电解质层,形成在电解质层上的第二电极层和形成在第二电极上的第二电极集电体 层。 第一和第二电极收集器中的至少一个可以包括密度在约800kg / m 3至约1600kg / m 3范围内的多孔金属基底和与多孔金属基底电连接的多个金属线。 可以优化电极集电器的密度以使电极和电极收集器之间具有改善的接触状态。 在操作期间,燃料电池堆可因此具有增强的性能特征。
Abstract:
A tubular fuel cell module having improved current collecting efficiency. In one embodiment, the fuel cell module includes: a fuel cell unit; a first current collector extending along an outer side of the fuel cell unit; and a second current collector wound around the first current collector and around the outer side of the fuel cell unit. Here, the outer side of the fuel cell unit is a curved outer side, the first current collector has a curved inner side facing the curved outer side of the fuel cell unit, and the curved inner side of first current collector is shaped to match the curved outer side of the fuel cell unit.
Abstract:
Disclosed herein is a prismatic battery having an electrode assembly mounted in a prismatic battery case, wherein an electrolyte injection hole formed in a base plate mounted to an open upper end of the battery case is constructed such that an inside upper end of the electrolyte injection hole is formed in a downward taper (incline) structure, and a metal ball is forcibly inserted into the electrolyte injection hole such that the metal ball is plastically deformed to seal the electrolyte injection hole. The prismatic battery according to the present invention provides high coupling force between the metal ball and the electrolyte injection hole due to the plastic deformation and forced insertion of the metal ball and high sealability of the electrolyte injection hole. Also, the formation of a groove at the upper end of the forcibly inserted metal ball and the generation of cracks at the interface between the metal ball and the inside surface of the electrolyte injection hole are effectively prevented. Consequently, the present invention has the effect of accomplishing high electrolyte sealability.
Abstract:
Disclosed herein is a prismatic battery having an electrode assembly mounted in a prismatic battery case, wherein an electrolyte injection hole formed in a base plate mounted to an open upper end of the battery case is constructed such that an inside upper end of the electrolyte injection hole is formed in a downward taper (incline) structure, and a metal ball is forcibly inserted into the electrolyte injection hole such that the metal ball is plastically deformed to seal the electrolyte injection hole. The prismatic battery according to the present invention provides high coupling force between the metal ball and the electrolyte injection hole due to the plastic deformation and forced insertion of the metal ball and high sealability of the electrolyte injection hole. Also, the formation of a groove at the upper end of the forcibly inserted metal ball and the generation of cracks at the interface between the metal ball and the inside surface of the electrolyte injection hole are effectively prevented. Consequently, the present invention has the effect of accomplishing high electrolyte sealability.
Abstract:
A solid oxide fuel cell. The solid oxide fuel cell includes a unit cell, which includes a first electrode layer, an electrolyte layer, and a second electrode layer that are sequentially laminated from an inner region to an outer region of the unit cell; and an interconnector electrically connected to the first electrode layer, exposed to outside of the unit cell, and electrically insulated from the second electrode. The solid oxide fuel cell further includes a first porous current collector on an outer surface of the second electrode layer; a first adhesive layer interposed between the first porous current collector and the second electrode layer; a second porous current collector on an outer surface of the interconnector; and a second adhesive layer interposed between the second porous current collector and the interconnector.
Abstract:
A fuel cell stack includes a plurality of unit cells, bypass resistors, and connective resistors. The unit cells are connected in series and/or in parallel. The connected resistors are disposed between the unit cells connected in series and disconnected by heat due to resistance at a small current value in comparison to an current collector. The bypass resistors are connected in parallel to the unit cells or the unit cells connected in parallel.
Abstract:
The present invention relates to a method for producing a preantral follicle-derived embryonic stem cell and a preantral follicle-derived embryonic stem cell. The present method comprises the steps of (a) obtaining a preantral follicle from mammalian ovaries; (b) growing the preantral follicle in vitro; (c) maturing an oocyte in vitro present in the cultured preantral follicle; (d) activating the matured oocyte for parthenogenesis; (e) culturing the activated oocyte to form a blastocyst; and (f) culturing inner cell mass (ICM) cells of the blastocyst to produce the preantral follicle-derived embryonic stem cell.
Abstract:
A tubular fuel cell module having improved current collecting efficiency. In one embodiment, the fuel cell module includes: a fuel cell unit; a first current collector extending along an outer side of the fuel cell unit; and a second current collector wound around the first current collector and around the outer side of the fuel cell unit. Here, the outer side of the fuel cell unit is a curved outer side, the first current collector has a curved inner side facing the curved outer side of the fuel cell unit, and the curved inner side of first current collector is shaped to match the curved outer side of the fuel cell unit.
Abstract:
A management decision making support system is provided. The management decision making support system analyzes an operational decision making problem for operational decision making and a strategic decision making problem for strategic decision making to evaluate individual business feasibility, generates a plurality of enterprise business portfolios combining individual businesses evaluated as feasible, and selects an optimal enterprise business portfolio by analyzing the generated enterprise business portfolios. Objective and standardized enterprise management consulting can be provided, reliability can be ensured, and rapidly changing management conditions can be effectively coped with.