Abstract:
A single-input multi-output surface acoustic wave (“SAW”) device contains two or more output inter-digital transducers (“IDTs”) arranged in a longitudinal direction of a single input IDT. The detection sensitivity and reliability of the SAW device may be improved by eliminating the deviation and signal interference between multiple input IDTs.
Abstract:
A method of positively detecting toxic materials within a sample, the method including contacting sub-mitochondrial particles having competent mitochondrial enzymes formed from inner membranes of mitochondria, an electron donor which transmits electrons to an electron transfer system of the sub-mitochondrial particles and the sample, and forming reaction resultants, adjusting a pH of a pH indicator which change color according to a change in pH, adding the pH indicators to each reaction resultant and identifying color changes of the pH indicator. Also provided is a kit for positively detecting toxic materials within a sample.
Abstract:
Provided herein is a fluid sensor, which includes a closed reaction unit in which reaction of a fluid sample takes place. The reaction unit is tapered on a side through which the fluid is injected so as to prevent generation of air bubbles during the injection of the fluid. Thus, the sensor has improved sensitivity.
Abstract:
Provided herein is a method of detecting the presence of a specific nucleophile, which uses a material Y degraded by nucleophilic substitution of reacting with a specific nucleophile X, and a material Z selectively binding to a material Y′ produced by the degradation. According to the method, the nucleophile X can be easily analyzed according to the bonding between the materials Y′ and Z.
Abstract:
A surface acoustic wave device, including: a piezoelectric substrate; an interdigitated transducer electrode disposed on the substrate; an oxide film disposed on surface of the interdigitated transducer electrode; and a hydrophobic film disposed on a surface of the oxide film.
Abstract:
Provided herein is a method of detecting a biomolecule, which enhances a mass of the target biomolecule by irradiating light to a photocatalytic nanoparticle binding to the target biomolecule. Accordingly, the method can effectively detect a change in mass, and provide economical and rapid detection using a low-priced photocatalyst.
Abstract:
A surface acoustic wave (“SAW”) sensor includes; a first signal generator which generates a first signal having a predetermined frequency bandwidth using a pseudo random sequence, a second signal generator which generates a second signal with a predetermined frequency, a signal blender which blends the first signal with the second signal to generate a blended signal having the predetermined frequency bandwidth with the predetermined frequency as a center frequency, a wave generator which generates a surface acoustic wave using the blended signal, which converts the surface acoustic wave into a third signal after the surface acoustic wave travels a predetermined distance, and which outputs the third signal, and a signal detector which detects a change in the third signal from the wave generator to sense a substance bound to the wave generator.
Abstract:
A 3-dimensional air bubble trapping apparatus includes a plurality of chambers, each having an inflow and outflow channel at both ends, and which traps air bubbles in a material introduced through the inflow channel, wherein the chambers are divided into a previous chamber and a next chamber based on a moving direction of the material in the chamber, and wherein the outflow channel of the previous chamber is connected to the inflow channel of the next chamber, and wherein a face perpendicular to an outflow direction of the material in the outflow channel of the previous chamber is not disposed parallel with a face perpendicular to the outflow direction of the material in the outflow channel of the next chamber, whereby air bubbles in the material are trapped without being affected by an angle defined by a gravity direction and vibration of the apparatus.
Abstract:
The microfluidic device includes a rotatable platform, a plurality of connection ports disposed at a portion of the platform proximate to a shaft connection hole, the plurality of connection ports capable of being connected to an external connector for selectively injecting and discharging fluid and being closed by the connector, a trap chamber disposed at a portion of the platform further away from the shaft connection hole than the plurality of connection ports, the trap chamber including an inlet connected with at least one connection port of the plurality of connection ports, an outlet connected with another connection port of the plurality of connection ports and structures which enlarge a contact area with the fluid and a temporary storage including an inlet connected with the outlet of the trap chamber and an outlet connected with another connection port of the plurality of connection ports.
Abstract:
Provided herein is a method of manufacturing a gas sensor. The method includes forming electrodes on a surface of a substrate, manufacturing a paste having a complex of CNTs and a metal-ligand complex comprising a metal that has gas adsorption selectivity for specific gases, coating the paste on the substrate to cover the electrodes, patterning the paste by a photolithography process, and reducing the metal-ligand complex included in the patterned paste.