Abstract:
The present invention relates to discrete particulate composite additives for superabsorbent polymers and includes a method of making same. The discrete particulate composite additives generally comprise a polysaccharide and an inert inorganic component. Advantageously, these discrete particulate composite additives functionally improve superabsorbent performance. They are suitable for a number of applications, including the use and manufacture of hygiene products.
Abstract:
The present invention relates to discrete particulate composite additives for superabsorbent polymers and includes a method of making same. The discrete particulate composite additives generally comprise a polysaccharide and an inert inorganic component. Advantageously, these discrete particulate composite additives functionally improve superabsorbent performance. They are suitable for a number of applications, including the use and manufacture of hygiene products.
Abstract:
Disclosed is a process for reducing the particle size of glass-like polysaccharides. The process efficiently reduces the particle size of glass-like polysaccharides selected from the group consisting of glass-like polysaccharides having a moisture content from 0% to about 13% and glassy state glass-like polysaccharides. The process comprises the use of a roller mill having at least three pairs of successive rollers.
Abstract:
The present invention relates to an absorbent or a superabsorbent nanocomposite material comprising a polysaccharide and a phyllosilicate. The polysaccharide component can be a biodegradable polysaccharide that is a self-entangled glass-like polysaccharide or a crosslinked polysaccharide. The phyllosilicate component can be an exfoliation or a semi-exfoliation clay.