-
公开(公告)号:US20090043216A1
公开(公告)日:2009-02-12
申请号:US11837166
申请日:2007-08-10
Applicant: Szming Lin , Thomas Ying-Ching Lo
Inventor: Szming Lin , Thomas Ying-Ching Lo
CPC classification number: G06K9/00523 , A61B5/0205 , A61B5/04525 , A61B5/486 , A61B5/7214 , A61B5/7264 , A61B5/7267
Abstract: A subject's heart rate is determined by recognizing heart beat patterns in a heart beat signal. A heart rate monitor receives a Doppler signal reflected from an artery of a target, performs demodulation and heart beat recognition techniques on the received signal to determine a set or sequence of features in each frame of the signal. Once a feature sequence is extracted from the signal, pattern classification is performed to determine if the extracted feature sequence is associated with one or more heart beats. The pattern classification may include finding the optimal state sequence by calculating the probability of each allowable state sequence based on the extracted feature sequence and heart beat models or additional noise models. Another pattern classification technique may determine a heart beat candidate using frame energy and dynamic thresholding methods followed by computing the probabilities between the feature sequence and each stored heart beat model or additional noise models. A further pattern classification technique may identify heart beat candidates using frame energy and dynamic thresholding methods and compute the similarity between the feature sequences and each of the stored heart beat templates. Post-processing is applied to heart beat candidates to determine if the candidates are associated with a true heartbeat, noise or some other signal source. Once a true heart beat is identified, the subject heart rate is updated based on the detected heart beat and displayed for a user.
Abstract translation: 通过识别心跳信号中的心跳模式来确定受试者的心率。 心率监测器接收从目标的动脉反射的多普勒信号,对接收的信号执行解调和心跳识别技术,以确定信号的每个帧中的特征的集合或序列。 一旦从信号中提取特征序列,则执行模式分类以确定提取的特征序列是否与一个或多个心跳相关联。 模式分类可以包括通过基于提取的特征序列和心跳模型或附加噪声模型计算每个可允许状态序列的概率来找到最佳状态序列。 另一种模式分类技术可以使用帧能量和动态阈值方法确定心跳候选,然后计算特征序列与每个存储的心跳模型或附加噪声模型之间的概率。 进一步的模式分类技术可以使用帧能量和动态阈值方法来识别心跳候选,并且计算特征序列与存储的每个心跳模板之间的相似性。 后处理应用于心跳候选,以确定候选者是否与真正的心跳,噪声或某些其他信号源相关联。 一旦确定了真正的心跳,则基于检测到的心跳来更新主体心率,并为用户显示。
-
公开(公告)号:US08046058B2
公开(公告)日:2011-10-25
申请号:US11837166
申请日:2007-08-10
Applicant: Szming Lin , Thomas Ying-Ching Lo
Inventor: Szming Lin , Thomas Ying-Ching Lo
IPC: A61B5/04
CPC classification number: G06K9/00523 , A61B5/0205 , A61B5/04525 , A61B5/486 , A61B5/7214 , A61B5/7264 , A61B5/7267
Abstract: A subject's heart rate is determined. A heart rate monitor receives a Doppler signal reflected from an artery of a target, performs demodulation and heart beat recognition techniques to determine a set of features in each frame of the signal. Pattern classification is performed to determine if the extracted feature sequence is associated with heart beats. The pattern classification may include finding the optimal state sequence by calculating the probability of each allowable state sequence based on the extracted feature sequence and heart beat models or additional noise models. Or, a heart beat candidate is determined using frame energy and dynamic thresholding followed by computing the probabilities between the feature sequence and each stored heart beat model or additional noise models. Or, heart beat candidates are determined using frame energy and dynamic thresholding which compute the similarity between the feature sequences and each of the stored heart beat templates.
Abstract translation: 确定受试者的心率。 心率监测器接收从目标的动脉反射的多普勒信号,执行解调和心跳识别技术以确定信号的每个帧中的一组特征。 执行模式分类以确定提取的特征序列是否与心跳相关联。 模式分类可以包括通过基于提取的特征序列和心跳模型或附加噪声模型计算每个可允许状态序列的概率来找到最佳状态序列。 或者,使用帧能量和动态阈值确定心跳候选,然后计算特征序列和每个存储的心跳模型或附加噪声模型之间的概率。 或者,使用帧能量和动态阈值来确定心跳候选,其计算特征序列和存储的心跳模板中的每一个之间的相似性。
-