Abstract:
A double container includes an outer layer body constituting an outer shell; an inner layer body including an upper opening communicating with a containing space, accommodated in the outer layer body, and deformable to undergo volume reduction; an inside plug including a tubular wall extending toward the containing space, a spherical body serving as a valve body being disposed inside the tubular wall; and a dispensing plug fitted to a mouth portion of the outer layer body and including a dispensing tube connected to the tubular wall. The tubular wall includes an inclined wall having a diameter decreasing toward the containing space and configured to abut against the spherical body over an entire circumference and including a protruding wall protruding from the inclined wall to the containing space. The protruding wall includes a liquid holding member holding a pool of liquid medium of the content formed below the spherical body.
Abstract:
The threshold voltage is shifted in a negative or positive direction in some cases by an unspecified factor in a manufacturing process of the thin film transistor. If the amount of shift from 0 V is large, driving voltage is increased, which results in an increase in power consumption of a semiconductor device. Thus, a resin layer having good flatness is formed as a first protective insulating film covering the oxide semiconductor layer, and then a second protective insulating film is formed by a sputtering method or a plasma CVD method under a low power condition over the resin layer. Further, in order to adjust the threshold voltage to a desired value, gate electrodes are provided over and below an oxide semiconductor layer.
Abstract:
In an information processing apparatus, a first processor executes firmware and data processing instructions, a second processor conducts management of firmware updating and system settings, first and second memories store current and updated firmware, a third memory stores system settings information, and a switch changes connections of the first and second memories under control of the second processor, to connect one of the first and second memories to a bus connected to the first processor and to connect the other to the second processor. During firmware execution by the first processor, the second processor reads the system settings information from the third memory and provides it to the first processor. The first processor reflects firmware data from updated firmware in the second memory in the system settings information and the second processor stores the system settings information in which updated firmware data is reflected into the third memory.
Abstract:
An image with a desired contrast is obtained while suppressing body motion artifacts caused by both random motion and periodic motion of an object. In order to do so, an imaging sequence using a non-Cartesian sampling method is executed so as to synchronize with a biological signal only at the start time and a repetition time (TR), which is an execution interval between shots within the imaging sequence, is maintained. In addition, a time difference between a delay time and a start time of each shot is calculated, and a shot with a predetermined time difference or more is executed again after the TR time.
Abstract:
A flexible coupling includes: spool members disposed equidistantly on a circumference; torque transmission lines disposed around adjacent pairs of the spool members; and an annular elastic body in which the spool members and the torque transmission lines are embedded. The torque transmission lines consist of first torque transmission lines, and second torque transmission lines whose total sum of cross-sectional area is a half of that of the first torque transmission lines. The flexible coupling is constructed so that the first torque transmission lines transmit positive torque and the second torque transmission lines transmit negative torque, and is incorporated into a vehicle motive power transmission apparatus that has a hypoid gear whose mesh transmission error is greater during transmission of negative torque than during transmission of positive torque.
Abstract:
A beam dose computing method includes dividing a surface area of a target object into include first, second and third regions of different sizes, the third regions being less in size than the first and second regions, determining first corrected doses of a charged particle beam for correcting fogging effects in the first regions, determining corrected size values for correcting pattern line width deviations occurring due to loading effects in the second regions to create a map of base doses of the beam in respective of said second regions and to prepare a map of proximity effect correction coefficients in respective of said second regions, using the maps to determine second corrected doses of the beam for proximity effect correction in the third regions, and using the first and second corrected doses to determine an actual beam dose at each position on the surface of said object.
Abstract:
The present invention has an object to provide an insoluble carrier for an antiphospholipid antibody detection reagent having a high reactivity. The present invention also has an object to provide an antiphospholipid antibody detection reagent, and a method of detecting an antiphospholipid antibody. The present invention directs to an insoluble carrier for an antiphospholipid antibody detection reagent, having a zeta potential of lower than −45 mV in the case that the insoluble carrier is suspended in a 20 mmol/L aqueous sodium phosphate solution with a pH of 7.4 so that the resulting suspension has a solids concentration of 0.1%.
Abstract:
A pattern inspection apparatus includes a pulsed light source configured to emit pulsed light; a stage configured to mount thereon an inspection target object with a pattern formed thereon; a time delay integration (TDI) sensor configured to detect, a plurality of times with a time delay, each pixel value of an optical image of the inspection target object, wherein the optical image is acquired by emitting the pulsed light onto the inspection target object, and to integrate a detected each pixel value for each pixel of the optical image; a light quantity sensor configured to detect a light quantity of the pulsed light after emitting the pulsed light onto the inspection target object; a light quantity measurement circuit configured to input the light quantity detected by the light quantity sensor, and to measure a light quantity of each pulse while being synchronized with a period of the pulsed light; a correction unit configured to input the light quantity of each pulse and an integrated pixel value output from the TDI sensor, and to correct the integrated pixel value output from the TDI sensor, for each pixel of the optical image, using a total light quantity of the light quantity of corresponding each pulse; and an inspection unit configured to inspect whether there is a defect of the pattern, using the integrated pixel value corrected.
Abstract:
A magnetic resonance imaging apparatus comprises object placing means for placing an object in an imaging space, translating means for translating the object in a given direction by translating the object placing means in the given direction continuously or step-wise, magnetic field generating means for exciting the desired region of the object by generating a static magnetic field, a gradient magnetic field in the imaging space, and a high-frequency magnetic field in the imaging space, signal detecting means for detecting a magnetic resonance signal from the object, and control unit for controlling the translating means, magnetic field generating means and the signal detecting means, and translating the object continuously or stepwise to a predetermined position at a predetermined speed so as to capture a magnetic resonance image of the object.The magnetic resonance imaging apparatus further comprises translation error detecting means for detecting an error of the position or the set value of the speed, and correcting means for correcting the error detected by the positional error detecting means.
Abstract:
A magnetic resonance imaging apparatus comprising static magnetic field generating means for generating a static magnetic field in an imaging space, measuring means for generating a high-frequency magnetic field and a gradient magnetic field in the imaging space and measuring a nuclear magnetic resonance signal generated from an object to be examined placed in the imaging space, signal processing means for reconstructing a magnetic resonance image according to the nuclear magnetic resonance signal, control means for controlling the measuring means and the signal processing means, and display means for displaying the reconstructed magnetic resonance image obtained by the signal processing means.The magnetic resonance imaging apparatus further comprises storing means for storing a first set of information representing an inhomogeneous distribution of the static magnetic field generated depending on the characteristic of the static magnetic field generating means and a second set of information representing an inhomogeneous distribution of the static magnetic field generated depending on the tissue of the object, setting means for setting a field of view for imaging in a desired region of the object, selecting means for selecting information corresponding to the set field of view for imaging out of the second set of information as a third set of information, and correcting magnetic field generating means for generating a correcting magnetic field according to the third set of information and the first set of the information.