Abstract:
An electrical capacitance volume tomography sensor for use in high temperature, high pressure applications for measuring or imaging a flow within the sensor, the sensor comprising an outer pressure vessel, a plurality of electrodes placed within the outer pressure vessel, a plurality of threaded studs, wherein one of the threaded studs is attached to one of the plurality of electrodes, a coating or layer is placed on the plurality of electrodes for electrically isolating the plurality of electrodes, a plurality of holes in the outer pressure vessel for allowing terminal connections to the plurality of electrodes within the outer pressure vessel, wherein each of the plurality of holes accepts one of the plurality of threaded studs, and a plurality of gaskets, where one gasket is placed at each of the plurality of holes to seal the pressure at each of the holes in the outer pressure vessel by placing one gasket concentric around one threaded stud and conforming each gasket between a back of an electrode and the inside wall of the pressure vessel by tightening each of the plurality of nuts on each of the threaded studs.
Abstract:
A system and method for imaging, monitoring, or measuring systems and processes utilizing only data provided from capacitance sensors. The present invention combines the multi-frequency method of both ECVT/AECVT and DCPT to image or measure processes and systems more efficiently and accurately than the methods alone. The present system analyzes capacitance and current phase acquired at multiple frequencies to determine a plurality of properties of single and multiphase systems all at once. The combined use of ECVT and DCPT in multiphase flow can also be extended to measure volume fraction and phase distribution of flows involving greater than three phases by using multiple frequencies for capacitance, current phase, or both.
Abstract:
A flexible capacitance sensor having multiple layers for communicating signals to a data acquisition system for reconstructing an image of an area or object located in a subject being sensed, the flexible capacitance sensor having a flexible layer of capacitance plates; a flexible shielding ground layer next to the layer of capacitance plates; a flexible layer of signal traces next to the shielding ground layer, where the layer of signal traces has a plurality of trace lines; and where the capacitance sensor is flexible and adapted to be wrapped around the subject being sensed. The sensor is adapted to communicate signals via the plurality of trace lines to a data acquisition system for providing an image of the area or object between the capacitance plates.
Abstract:
The present invention provides a system and method for velocity vector field calculation at the voxel level of a multi-phase flow system using Electrical Capacitance Volume Tomography sensors.
Abstract:
The present invention provides a system and apparatus for inspecting tendons and cable stays in bridges and structures using multi-frequency excitation of an ECVT sensor.
Abstract:
A non-intrusive multi-dimensional or multi-phase flow measurement instrument that uses capacitance electrodes to measure volume fraction (0-100%) and velocity for flows having single or multiple phases. It includes integrating the multi-dimensional capacitance sensing technology with several algorithms to increase accuracy and detect fluid phases and flow conditions. The multi-dimensional flow meter is a universal instrument to measure flows with single, two, three, or more phases using a set of multi-dimensional capacitance sensors. The multi-dimensional flow meter is capable of measuring the individual components and flow rates of virtually any multi-phase flow by using single amplitude and electric phase measurements or integrating multiple measurements of amplitude, phase (and at different frequencies), to identify the volumetric or mass flow rate of a passing flow.
Abstract:
The present invention provides a system and method for multi-phase flow decomposition using electrical capacitance imaging techniques. The present invention provides a system and method to obtain permittivity distributions at a plurality of frequency markers using volume tomography image reconstruction to determine volume fraction of each phase and to produce images of the volume fraction for each phase.
Abstract:
A system and method for Displacement Current Phase Tomography. The present system invention obtains a linear relationship between mutual displacement current from a sensor (output current of the measuring electrode terminals) and the area (or volume) of an object to be imaged in the imaging domain. The system uses capacitance sensors and utilizes the phase of the measured current, in addition to the amplitude, to reconstruct an image.
Abstract:
The present invention provides a system and method for multi-phase flow decomposition using electrical capacitance imaging techniques. The present invention provides a system and method to obtain permittivity distributions at a plurality of frequency markers using volume tomography image reconstruction to determine volume fraction of each phase and to produce images of the volume fraction for each phase.
Abstract:
The present invention provides a system and apparatus for inspecting tendons and cable stays in bridges and structures using multi-frequency excitation of an ECVT sensor.