Abstract:
Embodiments of the present invention provide improved systems and methods for providing an atomic sensor device. In one embodiment, the device comprises a sensor body, the sensor body enclosing an atomic sensor, wherein the sensor body contains a gas evacuation site located on the sensor body, the gas evacuation site configured to connect to a gas evacuation device. The device also comprises a getter container coupled to an opening in the sensor body, an opening in the getter container coupled to an opening in the sensor body, such that gas within the sensor body can freely enter the getter container. The device further comprises an evaporable getter enclosed within the getter container, the evaporable getter facing away from the sensor body.
Abstract:
A ring laser gyroscope that includes a cavity containing a gain medium, a first plurality of reflective surfaces coupled to the cavity, a medium exciter operable to excite the gain medium, and a saturation beam source operable to emit a saturation beam. The first plurality of reflective surfaces includes a first reflective surface, a second reflective surface, and a third reflective surface. The first, second, and third reflective surfaces are positioned to reflect light along a path defined in the cavity between the plurality of reflective surfaces. The excited gain medium induces first and second laser fields within the cavity. The emitted saturation beam intersects with the first and second laser fields at a first interaction region of the cavity. The saturation beam interacts with the gain medium to reduce the gain of the first and second laser fields at a first range of frequencies.
Abstract:
A physic package for an atomic clock comprising: a block made of optical glass, a glass ceramic material or another suitable material that includes a plurality of faces on its exterior and a plurality of angled borings that serve as a vacuum chamber cavity, light paths and measurement bores; mirrors fixedly attached using a vacuum tight seal to the exterior of the block at certain locations where two light paths intersect; optically clear windows fixedly attached using a vacuum tight seal to the block's exterior over openings of the measurement bores and at one location where two light paths intersect; and fill tubes fixedly attached using a vacuum tight seal to the exterior of the block over the ends of the vacuum chamber cavity. This physics package design makes possible atomic clocks having reduced size and power consumption and capable of maintaining an ultra-high vacuum without active pumping.
Abstract:
A physic package for an atomic clock comprising: a block made of optical glass, a glass ceramic material or another suitable material that includes a plurality of faces on its exterior and a plurality of angled borings that serve as a vacuum chamber cavity, light paths and measurement bores; mirrors fixedly attached using a vacuum tight seal to the exterior of the block at certain locations where two light paths intersect; optically clear windows fixedly attached using a vacuum tight seal to the block's exterior over openings of the measurement bores and at one location where two light paths intersect; and fill tubes fixedly attached using a vacuum tight seal to the exterior of the block over the ends of the vacuum chamber cavity. This physics package design makes possible atomic clocks having reduced size and power consumption and capable of maintaining an ultra-high vacuum without active pumping.
Abstract:
A microcontainer device for micro-electro-mechanical systems such as atomic clocks is provided. The microcontainer device includes a substrate and a cavity in the substrate defined by a sidewall having an upper edge. The cavity is configured to hold a reactive material such as rubidium or cesium. A lid having a lower surface is configured to sealingly cover the cavity. A first hermetic material is disposed around an outer perimeter of the upper edge of the sidewall, and a second hermetic material is disposed around a perimeter of the lower surface of the lid. A sealing material chemically compatible with the reactive material is disposed around an inner perimeter of the upper edge of the sidewall adjacent to the first hermetic material.
Abstract:
Embodiments of the present invention provide improved systems and methods for providing an atomic sensor device. In one embodiment, the device comprises a sensor body, the sensor body enclosing an atomic sensor, wherein the sensor body contains a gas evacuation site located on the sensor body, the gas evacuation site configured to connect to a gas evacuation device. The device also comprises a getter container coupled to an opening in the sensor body, an opening in the getter container coupled to an opening in the sensor body, such that gas within the sensor body can freely enter the getter container. The device further comprises an evaporable getter enclosed within the getter container, the evaporable getter facing away from the sensor body.
Abstract:
A ring laser gyroscope that includes a cavity containing a gain medium, a first plurality of reflective surfaces coupled to the cavity, a medium exciter operable to excite the gain medium, and a saturation beam source operable to emit a saturation beam. The first plurality of reflective surfaces includes a first reflective surface, a second reflective surface, and a third reflective surface. The first, second, and third reflective surfaces are positioned to reflect light along a path defined in the cavity between the plurality of reflective surfaces. The excited gain medium induces first and second laser fields within the cavity. The emitted saturation beam intersects with the first and second laser fields at a first interaction region of the cavity. The saturation beam interacts with the gain medium to reduce the gain of the first and second laser fields at a first range of frequencies.