Abstract:
A method and apparatus are disclosed for treating a variety of conditions include treating a disorder associated with neural activity near a region of a brain. In such condition, the method includes placing an electrode to create a field near said region, creating said field with parameters selected to at least partially block neural activity within said field. For treating a tissue sensation, the method includes identifying a target area of tissue to be treated and placing an electrode to create a field near the target area, and creating the field with parameters selected to at least partially block neural activity within the target area. For treating a condition associated with neural activity of a spinal cord, the method includes placing an electrode to create a field near a nerve associated with the spinal cord, and creating the field with parameters selected to at least partially block neural activity within the nerve.
Abstract:
Systems and methods for treating at least one of a plurality of disorders characterized at least in part by vagal activity. In embodiments, a method for treating obesity comprises positioning a first electrode on a vagus nerve of an obese patient at a location below a vagal innervation of the heart; treating the patient's obesity by applying an electrical treatment signal to the electrode with the electrical treatment signal having: a frequency selected for the signal to at least partially downregulate nerve impulses on the vagal nerve, wherein the signal has a frequency in excess of 200 Hz, and without simultaneously applying a neural impulse-inducing secondary electrical signal to the vagus nerve on a proximal side of the location whenever the electrical treatment signal is applied; and b) a plurality of on-times separated by a plurality of off-times, the signal applied during the on-times and not applied during the off-times, wherein the duration of the off-times is selected in response to a signal from a sensing electrode representing at least 50% of the activity of the vagal nerve as compared to baseline.
Abstract:
A pharyngeal airway having a pharyngeal wall of a patient at least partially surrounding and defining the airway is treated by selecting an implant dimensioned so as to be implanted at or beneath a mucosal layer of the pharyngeal wall and extending transverse to said wall. The implant has mechanical characteristics for the implant, at least in combination with a fibrotic tissue response induced by the implant, to stiffen said pharyngeal wall to resist radial collapse. The implant is implanted into the pharyngeal wall transverse to a longitudinal axis of the airway.
Abstract:
At least one of a plurality of gastrointestinal disorders is treated by stimulating an enteric nervous system of a patient to enhance a functional tone of the enteric nervous system. A treatment includes electrically stimulating a vagus nerve of the patient at a stimulation site proximal to at least one site of vagal innervation of a gastrointestinal organ. The electrical stimulation includes applying a stimulation signal at the stimulation site. An optional proximal electrical blocking signal is applied to the vagus nerve at a proximal blocking site proximal to the stimulation site. The proximal blocking signal is selected to at least partially block nerve impulses at the proximal blocking site.
Abstract:
A method and apparatus are disclosed for anesthetizing a region of a patient's body. The method includes identifying a target nerve which, upon activation, anesthetizes a region of a patient's body including a surgical site. The target nerve is located and an active site of a nerve blocking apparatus is placed in proximity to the nerve. The nerve blocking apparatus is activated to block neural propagation along the nerve. The activation of the nerve blocking apparatus is maintained during a surgical procedure at the surgical site.
Abstract:
A method and apparatus for treating a patient's health condition by diverting pancreatic exocrine secretions include a flow diverter of material compatible with chronic residence within a small intestine of the patient. The flow diverter has a cover end and a discharge end. The flow diverter is sized to be placed within the small intestine with the discharge end placed distally from said cover end and with said flow diverter further sized so permit passage of chyme through the small intestine and past the flow diverter. The cover end is sized to cover a discharge papilla of the pancreatic duct. The diverter is adapted to divert at least a portion of pancreatic exocrine secretion from the papilla to the distal discharge end.
Abstract:
A patient's pharyngeal wall is treated by inserting an expander member into the airway and positioning an active portion of the expander member in opposition to portions of the pharyngeal wall to be treated. The expander member is activated to urge the wall portions outwardly to an outwardly displaced position. The expander member is then deactivated while leaving the wall portions in the outwardly placed position and the expander member is removed from said airway. A further aspect of the treatment includes stabilization of at least a portion of the pharyngeal wall after compression of portions of the wall.
Abstract:
Methods and an apparatus are described for treating at least one of a plurality of disorders of a patient characterized at least in part by vagal activity innervating at least one of a plurality of organs of the patient. Embodiments include a method for treating a patient having a gastro-intestinal disorder having a inflammatory basis, including positioning an electrode on a vagus nerve below a vagal innervation of a heart of the patient, and treating the patient's gastro-intestinal disorder by applying an electrical signal to the electrode, wherein the signal has a frequency of at least 500 Hz and is selected to down-regulate neural activity on the vagus nerve, allow partial restoration of nerve activity upon discontinuation of the electrical signal, and wherein the signal is configured to reduce pancreatic output and biliary output. An electrical signal is applied to the electrode to modulate vagal activity by an amount selected to treat the disorder. The signal may be blocking or a stimulation signal.
Abstract:
Obesity is treated by applying a non-ablative, non-systemic therapy to a vagus nerve of an obese patient at a site below a vagal innervation of a heart. The therapy is selected to at least partially down-regulate a neural activity on the vagus nerve of the obese patient. The therapy is applied in a manner to down-regulate at least afferent signals on the vagus nerve.
Abstract:
A pharyngeal airway having a pharyngeal wall of a patient at least partially surrounding and defining the airway is treated by selecting an implant dimensioned so as to be implanted at or beneath a mucosal layer of the pharyngeal wall and extending transverse to said wall. The implant has mechanical characteristics for the implant, at least in combination with a fibrotic tissue response induced by the implant, to stiffen said pharyngeal wall to resist radial collapse. The implant is implanted into the pharyngeal wall transverse to a longitudinal axis of the airway.