Abstract:
An authorization system determines a user's permission to access an object implicitly based on relationships in a data-driven model. The system provides the ability to mark a relationship type in the model between one object class (accessor) and another object class (accessed) as an implicit authorization relationship type. A user can define the permissions granted to the accessor object on the accessed object. When an accessor object tries to access a related accessed object over an authorization relationship type, the authorization system determines the permissions granted by inspecting the implicit authorization relationship type definition. The authorization system can also traverse containment relationship types to grant objects permissions contained by other objects. The authorization system dynamically determines authorization based on a relationship model that more naturally fits the actions that an administrator of a data-driven system is familiar with, and does not involve complex direct authorization or group membership management.
Abstract:
An authorization system determines a user's permission to access an object implicitly based on relationships in a data-driven model. The system provides the ability to mark a relationship type in the model between one object class (accessor) and another object class (accessed) as an implicit authorization relationship type. A user can define the permissions granted to the accessor object on the accessed object. When an accessor object tries to access a related accessed object over an authorization relationship type, the authorization system determines the permissions granted by inspecting the implicit authorization relationship type definition. The authorization system can also traverse containment relationship types to grant objects permissions contained by other objects. The authorization system dynamically determines authorization based on a relationship model that more naturally fits the actions that an administrator of a data-driven system is familiar with, and does not involve complex direct authorization or group membership management.
Abstract:
In a management system, a management server authorizes users to access computing devices based on class space and instance space. The management server further determines whether users are authorized to use particular computing devices and/or applications provided by the particular computing devices. Alerts may also be provided to the users by the management server.
Abstract:
Management related data is provided to a user. Tags are attached to the provided management related data upon user instruction. A tag is way to identify a piece of management. The tags that correspond with the management related data are stored in a database of the management system.
Abstract:
One or more available command units can be represented with a computer output device. The available command units can be command units from one or more snapins, such as one or more snapins that include command units to be run with a shell application. User input can be received from an input device, the user input selecting one or more selected command units of the available command units. In response to the user input, source code can be automatically generated from the one or more command units, and the source code can be automatically compiled to generate one or more workflow activities.
Abstract:
A data feed is defined with a data type and criteria. Each data type corresponds to a type of management related data provided by a management system. The management system is searched for all management related data that corresponds with the data type and the criteria. An aggregator collects the management related data that corresponds with the data type and the criteria. The collected management related data is rendered for a display.
Abstract:
One or more available command units can be represented with a computer output device. The available command units can be command units from one or more snapins, such as one or more snapins that include command units to be run with a shell application. User input can be received from an input device, the user input selecting one or more selected command units of the available command units. In response to the user input, source code can be automatically generated from the one or more command units, and the source code can be automatically compiled to generate one or more workflow activities.
Abstract:
One embodiment of the invention uses templates that define certain features of a given service type, wherein the features are common to all services of that service type. The template can be configured by a user to obtain a service definition for the given service. The service definition is passed to a programmability layer and provides enough information that the programmability layer can construct the various monitors, rules, classes and tasks required to monitor the given service without further customization by the user. In one embodiment, the user can also customize the service definition, a desired, in order to obtain additional monitoring.
Abstract:
Systems and methods for playbook automation are described. In one aspect, a user selects operational knowledge associated with an application. The user associates one or more playbook-based tasks, playbook-based views, or playbook-based links with the operational knowledge. The playbook-based tasks, playbook-based views, and playbook-based links are for diagnosing, resolving, and/or verifying a problem associated with the application. The systems and methods generate an integrated management pack from the associated operational knowledge and at least one of the one or more playbook-based tasks, playbook-based views, or playbook-based links.