Abstract:
An external endoscope light source system includes light emitting diodes for providing a light output to an endoscope. The light is provided to a fiber optic cable for transmission to the endoscope. A fiber optic receives a portion of the light output and provides the output to a color sensor for sensing color values. The color values are provided to a controller that adjusts power to the various LEDs to provide a white light output. Instead of a color sensor in the light source, the light source can receive a white balance signal from a video camera provided for an endoscope. The white balance signal varies intensity of light output from each of the LEDs to obtain a white light output. The camera also provides shutter speed of a camera image sensor to the light source. The shutter speed is used to pulse or modulate the light output only when the shutter of the camera is open. By modulating the light output by the light source, the amount of heat generated by the light source is minimized.
Abstract:
A method and apparatus for wirelessly synchronizing operation of an image sensor of an endoscopic video camera unit having a wireless transmitter with operation of a portable endoscopic light source unit includes transmitting a message packet with a target camera shutter period, light source target phase/trigger time/OFF time and light source target ON time to the light source unit. The light source unit controls the start time and the ON time for light output by a light source. The video camera unit includes a light detector for detecting the actual light source start time and duration of light output to provide closed-loop feedback. A camera controller ensures synchronization between the shutter period of the image sensor and actual operation of the light source based on the actual phase and actual ON time sensed by the light detector and the previously communicated target phase/trigger time/OFF time and target ON time.
Abstract:
A wireless foot control apparatus allows an operator to control multiple medical devices during an endoscopic medical procedure. The apparatus comprises a control console with controls designed for foot operation to control various medical devices. The controls include one or more foot pedals and foot switches to control the devices, including a selection switch to allow selection of the device to be controlled at a particular time. The console transmits signals over a wireless medium, to cause a remote receiver unit to select the device to be controlled and to control the selected device over a wired medium, in response to operation of the foot controls. The console may include a rechargeable battery, which may be sealed within the console's housing and charged inductively when the console is placed in a charging station. The receiver unit and the charging station can be separate units or integrated within a single housing.
Abstract:
An external endoscope light source system includes light emitting diodes for providing a light output to an endoscope. The light is provided to a fiber optic cable for transmission to the endoscope.
Abstract:
A method and apparatus for wirelessly synchronizing operation of an image sensor of an endoscopic video camera unit having a wireless transmitter with operation of a portable endoscopic light source unit includes transmitting a message packet with a target camera shutter period, light source target phase/trigger time/OFF time and light source target ON time to the light source unit. The light source unit controls the start time and the ON time for light output by a light source. The video camera unit includes a light detector for detecting the actual light source start time and duration of light output to provide closed-loop feedback. A camera controller ensures synchronization between the shutter period of the image sensor and actual operation of the light source based on the actual phase and actual ON time sensed by the light detector and the previously communicated target phase/trigger time/OFF time and target ON time.
Abstract:
A wireless operating room communication system provides wireless transmission of video signals from a wireless camera or a wireless transmitter unit to a portable wireless display unit. A wireless multiple device control unit is in wireless communication with the transmitter unit, the display unit, and a plurality of surgical devices disposed within the operating room. Each of the surgical devices has a video receiver to obtain a video signal to synchronize the devices and units. The video transmitter unit has a video transmitter and the other units or devices have a non-video transmitter. The arrangement enables transmission of device control signals on the same channel as the video signal. In response to changes in bandwidth, the video transmitter unit reduces the video signal to enable transmission thereof to the video display unit, while maintaining robustness of the control signals.
Abstract:
A method and apparatus for wirelessly synchronizing operation of an image sensor of an endoscopic video camera unit having a wireless transmitter with operation of a portable endoscopic light source unit includes transmitting a message packet with a target camera shutter period, light source target phase/trigger time/OFF time and light source target ON time to the light source unit. The light source unit controls the start time and the ON time for light output by a light source. The video camera unit includes a light detector for detecting the actual light source start time and duration of light output to provide closed-loop feedback. A camera controller ensures synchronization between the shutter period of the image sensor and actual operation of the light source based on the actual phase and actual ON time sensed by the light detector and the previously communicated target phase/trigger time/OFF time and target ON time.
Abstract:
A wireless foot control apparatus allows an operator to control multiple medical devices during an endoscopic medical procedure. The apparatus comprises a control console with controls designed for foot operation to control various medical devices. The controls include one or more foot pedals and foot switches to control the devices, including a selection switch to allow selection of the device to be controlled at a particular time. The console transmits signals over a wireless medium, to cause a remote receiver unit to select the device to be controlled and to control the selected device over a wired medium, in response to operation of the foot controls. The console may include a rechargeable battery, which may be sealed within the console's housing and charged inductively when the console is placed in a charging station. The receiver unit and the charging station can be separate units or integrated within a single housing.
Abstract:
An endoscopic system including an endoscope, a light source for the endoscope and at least one image sensor for capturing a plurality of images of a body cavity. The light source is configured to emit light from the endoscope and into the body cavity such that the light is reflected off of a plurality of locations in the body cavity. The system also includes a control system for controlling both the light source and the at least one image sensor to vary parameters of the light source and the at least one image sensor such that the plurality of images have underexposed and overexposed regions. The endoscopic system could alternatively include a variable-attenuator element device adjacent the image sensor and configured to be located between the body cavity and the image sensor for capturing a single clear image with the image sensor.
Abstract:
A wireless operating room communication system provides wireless transmission of video signals from a wireless camera or a wireless transmitter unit to a portable wireless display unit. A wireless multiple device control unit is in wireless communication with the transmitter unit, the display unit, and a plurality of surgical devices disposed within the operating room. Each of the surgical devices has a video receiver to obtain a video signal to synchronize the devices and units. The video transmitter unit has a video transmitter and the other units or devices have a non-video transmitter. The arrangement enables transmission of device control signals on the same channel as the video signal. In response to changes in bandwidth, the video transmitter unit reduces the video signal to enable transmission thereof to the video display unit, while maintaining robustness of the control signals.