Abstract:
The present invention relates to a method for the production of ethylene glycol using a feedstock comprising an oxalate and a catalyst containing copper and/or a copper oxide, comprising contacting the feedstock with the catalyst in a reactor under the conditions of a temperature in the range from about 170 to about 270° C., a weight hourly space velocity of the oxalate in the range from about 0.2 to about 5 h−1, a molar ratio of hydrogen to the oxalate in the range from about 40:1 to about 200:1 and a reaction pressure in the range from about 1.5 to about 10 MPa, to produce an effluent containing ethylene glycol, in which the reactor is a tube-array reactor using partitioned heat exchange and adopting outer and inner tubes configured in a double-tube structure to facilitate the heat exchange of the catalyst.
Abstract:
A process of producing oxalate by CO gas phase method includes the following steps: a) introducing nitrite salt, water and an inorganic acid first into a reactor I to produce a NO containing effluent I; and separating the resultant effluent to obtain the effluent II of NO; b) introducing the effluent II of NO, a C1-C4 alkanol and oxygen into a reactor II to be subjected to the reaction, and separating the resultant effluent to obtain the effluent IV of C1-C4 alkyl nitrites; c) introducing the effluent IV of C1-C4 alkyl nitrites and a CO gas stream into a coupling reactor where they are reacted to produce a NO containing effluent VI. The reactor I and/or the reactor II are preferably rotating supergravity reactors. Therefore, the process is applicable to the industrial production of oxalate by CO gas phase method.
Abstract:
The present invention relates to a process for the manufacture of catalysts used for producing para-xylene by toluene shape selective alkylation. The invention is primarily used for solving the problems in the old technology, e.g., high requirements on the environment and great treatment of waste water containing organic amines when synthesizing ZSM-5 molecular sieves by using an organic amine as the template agent; small and non-homogeneous particles of the molecular sieves when synthesizing ZSM-5 molecular sieves by using an alcohol or ether as the template agent, such that the catalyst prepared thereby has low catalytic selectivity and low toluene conversion rate, etc. Said problems are better solved in the present invention by synthesizing ZSM-5 molecular sieves using the combination of organic amines and alcohols or ethers as the template agents (having a weight ratio of organic amines/alcohols=0.05-150, and organic amines/ethers=0.05-150), and modifying with organosilicon so as to obtain the catalysts. Said catalysts can be used in the industrial production of para-xylene manufactured by toluene shape selective alkylation.
Abstract:
The present invention relates to a fluid-bed catalyst for the preparation of ethylene and propylene by catalytic cracking. The main technical problems to be solved are a relatively high reaction temperature, and low activities and poor selectivities of the catalyst at a low temperature, during the reaction for preparing ethylene and propylene by catalytically cracking naphtha. The technical solution of the catalyst is a composition of the chemical formula Mo1.0VaAbBcCdOX based on stoichiometric ratio. It has satisfactorily solved the above-mentioned problems, and is useful in the industrial production of ethylene and propylene by catalytically cracking naphtha.
Abstract:
The present invention relates to a process for the manufacture of catalysts used for producing para-xylene by toluene shape selective alkylation. The invention is primarily used for solving the problems in the old technology, e.g., high requirements on the environment and great treatment of waste water containing organic amines when synthesizing ZSM-5 molecular sieves by using an organic amine as the template agent; small and non-homogeneous particles of the molecular sieves when synthesizing ZSM-5 molecular sieves by using an alcohol or ether as the template agent, such that the catalyst prepared thereby has low catalytic selectivity and low toluene conversion rate, etc. Said problems are better solved in the present invention by synthesizing ZSM-5 molecular sieves using the combination of organic amines and alcohols or ethers as the template agents (having a weight ratio of organic amines/alcohols=0.05-150, and organic amines/ethers=0.05-150), and modifying with organosilicon so as to obtain the catalysts. Said catalysts can be used in the industrial production of para-xylene manufactured by toluene shape selective alkylation.
Abstract:
A process for producing ethylene glycol includes contacting an oxalate with a fluidized bed catalyst under the following conditions: a reaction temperature of from about 170 to about 270° C., a weight space velocity of oxalate of from about 0.2 to about 7 hours−1, a hydrogen/ester molar ratio of about 20˜200:1, a reaction pressure of from about 1.5 to about 10 MPa, and a reaction temperature difference T of from about 1 to about 15° C. The fluidized bed catalyst includes: a) from about 5 to about 80 parts by weight of copper and the oxide thereof, b) from about 10 to about 90 parts by weight of at least one carrier selected from silica, molecular sieve or alumina, c) from about 0.01 to about 30 parts by weight of bismuth and tungsten metallic elements or the oxides thereof, or cerium and niobium metallic elements or the oxides thereof.
Abstract:
A process of producing oxalate by CO gas phase method includes the following steps: a) introducing nitrite salt, water and an inorganic acid first into a reactor I to produce a NO containing effluent I; and separating the resultant effluent to obtain the effluent II of NO; b) introducing the effluent II of NO, a C1-C4 alkanol and oxygen into a reactor II to be subjected to the reaction, and separating the resultant effluent to obtain the effluent IV of C1-C4 alkyl nitrites; c) introducing the effluent IV of C1-C4 alkyl nitrites and a CO gas stream into a coupling reactor where they are reacted to produce a NO containing effluent VI. The reactor I and/or the reactor II are preferably rotating supergravity reactors. Therefore, the process is applicable to the industrial production of oxalate by CO gas phase method.
Abstract:
Processes for catalytically synthesizing ethylbenzene from ethanol and benzene comprising: 1) reacting a first mixture comprising ethanol and benzene with at least one catalyst chosen from binder-containing alkylation catalysts and binder-free alkylation catalysts in an alkylation reactor to obtain a second mixture comprising residual benzene, ethylbenzene, diethylbenzene, and water; 2) passing the second mixture successively through a benzene recovery tower, an ethylbenzene recovery tower, and a polyethylbenzene recovery tower to obtain separated water, separated benzene, separated ethylbenzene, and separated diethylbenzene; and 3) reacting a third mixture with at least one transalkylation catalyst in a transalkylation reactor, wherein the third mixture comprises at least some of the separated benzene and at least some of the separated diethylbenzene at a weight ratio ranging from about 2:1 to about 10:1.
Abstract:
The present invention provides a process for increasing ethylene and/or propylene yield during conversion of oxygenates using a system comprising a reactor and a regenerator, wherein the reactor comprises a fluidized bed reactor and a riser reactor, which process increases ethylene and/or propylene yield by using a mixture of the deactivated catalyst from the fluidized bed reactor and the regenerated catalyst from the regenerator in the riser reactor for further cracking the C4+ hydrocarbon stream separated from the product stream.
Abstract:
The present invention provides a process for producing lower olefins by catalytic cracking a feedstock comprising an olefins-enriched mixture containing C4 or higher olefins and optionally an organic oxygenate compound. The technical problem mainly addressed in the present invention is to overcome the defects presented in the prior art including low yield and selectivity of lower olefins as the target products, and short regeneration period of catalyst. The present process, which is carried out under the conditions of catalytic cracking olefins and adopts as a feedstock an olefins-enriched mixture containing one or more C4 or higher olefins and optionally an organic oxygenate compound, comprises the steps of: a) letting the feedstock firstly enter a first reaction zone to contact with a first crystalline aluminosilicate catalyst having a SiO2/Al2O3 molar ratio of at least 10, to thereby produce a first reaction effluent containing lower olefins; b) letting the first reaction effluent enter in turn at least one second reaction zone to contact with a second crystalline aluminosilicate catalyst having a SiO2/Al2O3 molar ratio of at least 10, to thereby produce a second reaction effluent containing lower olefins; and c) separating lower olefins from the second reaction effluent; wherein the reaction temperatures in the first and second reaction zones are controlled. The present process, which desirably solves the above technical problem, can be used in industrial production of lower olefins.
Abstract translation:本发明提供了一种通过催化裂化生产低级烯烃的方法,该原料包含含有C4或更高级烯烃和任选的有机含氧化合物的富含烯烃的混合物。 在本发明中主要解决的技术问题是克服现有技术中存在的缺点,包括低产率和低烯烃作为目标产物的选择性,催化剂的再生时间短。 本发明方法在催化裂化烯烃的条件下进行,并采用含有一种或多种C 4或更高级烯烃和任选的有机含氧化合物的富含烯烃的混合物作为原料,包括以下步骤:a) 首先进入与SiO 2 / Al 2 O 3摩尔比为至少10的第一结晶硅铝酸盐催化剂接触的第一反应区,从而产生含有低级烯烃的第一反应流出物; b)使第一反应流出物依次进入至少一个第二反应区,以与SiO 2 / Al 2 O 3摩尔比为至少10的第二结晶硅铝酸盐催化剂接触,从而产生含有低级烯烃的第二反应流出物; 和c)从第二反应流出物分离低级烯烃; 其中控制第一和第二反应区中的反应温度。 希望解决上述技术问题的本方法可用于低级烯烃的工业生产。