Abstract:
A device for high-speed real-time sampling of mid-infrared ultrafast light signals includes a time domain amplification unit and a detection unit. The time domain amplification unit is used to perform sampling and time domain amplification on signal light incident to the time domain amplification unit, and convert the signal light of a mid-infrared band into a near-infrared/visible band. The detection unit is used to receive and record information of the to-be-detected signal light processed by the time domain amplification unit to realize high-speed real-time sampling and measurement of the mid-infrared ultrafast light signal. The present disclosure can accurately obtain subpicosecond transient characteristics of the light signal, breaks through the capacity limit to the response rate of a traditional photoelectric detector, the bandwidth of the oscilloscope and the like, and is applicable to femtosecond-level mid-infrared ultrafast light signals.
Abstract:
The present invention provides a full-color three-dimensional optical sectioning microscopic imaging system and method based on structured illumination, includes an illumination source, a dichroic prism positioned at the illumination optical path, a structured light generator positioned at the reflected optical path of the dichroic prism, a lens positioned at the transmitted optical path of the dichroic prism, a beam splitter positioned at the optical path of the lens, an objective lens and a sample stage positioned at the upper optical path of the beam splitter, a reflector mirror and a tube lens positioned at the lower optical path of the beam splitter and a CCD camera positioned behind the tube lens. The illumination source is an incoherent monochrome LED or a white light LED The structured light generator is a DMD (Digital Micro-mirror Device).
Abstract:
The disclosure provides a dispersion management method and apparatus based on non-periodic spectral phase jumps. Precise dispersion is provided by virtue of non-periodic spectral phase jumps, the dispersion can be tuned freely with engineering of the phase jump. A device based on non-periodic spectral phase jump also has a wide working bandwidth and could promote the development of ultrafast optics. The method includes: spatially separating a light pulse with different frequency components, and meanwhile, making the light pulse with the different frequency components propagate in parallel; enabling the light pulse with the different frequency components and propagating in parallel to be incident on a non-periodic phase jump device to obtain non-periodic spectral phase jumps, forming a phase grating effect to obtain two ±1-order diffracted pulses having opposite group delays, and introducing frequency dependent relative delay for the different spectral components in the two diffracted pulses.
Abstract:
A system for generating a mid-infrared optical frequency comb based on a lithium niobate microcavity includes pumping units, a beam combining unit, a nonlinear frequency conversion unit and a filtering unit. The pumping units are divided into two paths and are configured to provide two paths of pumping light. The beam combining unit is configured to perform beam combination on the two paths of pumping light The nonlinear frequency conversion unit is configured to receive the beam-combined pumping light and undergo a nonlinear four-wave mixing process to generate a broadband optical frequency comb at a mid-infrared waveband. The filtering unit is configured to filter the remaining pumping light and output a mid-infrared optical frequency comb.
Abstract:
An antenna attitude fast measurement system and a method are provided. The measurement system includes a data processing unit, a stereo calibration unit, at least two detector measurement units, and a plurality of target marker units; the target marker unit is arranged on the back of the antenna main reflector of the antenna system to be measured; the detector measurement unit is arranged outside the circumference of the antenna system to be measured; and the stereo calibration unit is arranged directly below the center of the antenna main reflector of the antenna system to be measured. Any two adjacent detector measurement units have a field-of-view intersection area, and there is at least one target marker unit within the field-of-view intersection area. The total number of target marker units in all field-of-view intersection areas is ≥3. The data processing unit is electrically connected to the detector measurement unit.
Abstract:
A high-resolution real-time time-frequency domain measuring device includes a light splitting unit used to split signal light to be measured, a time lens unit used to perform time domain amplification on the signal light to be measured, a dispersion Fourier transform unit used to perform Fourier transform on the signal light to be measured, and a detection unit used to receive and detect measured data. The time lens and the dispersion Fourier transform technology are used to realize the real-time measurement of sub-picosecond transient characteristics of the ultra-short pulse to accurately obtain the time-frequency domain information of the ultra-short pulse.
Abstract:
The invention relates to a metamaterial nano-sensing system, and in particular to a high-sensitivity metamaterial nano-sensing system with an ultra-narrow line width spectral response. The system includes an input light path, a metamaterial nano-sensing unit and an output light path which are sequentially provided along a direction of a light path, and the metamaterial nano-sensing unit includes a Bragg grating and a metallic periodic array arranged above the Bragg grating. The nano-sensing system provided by the invention has an ultra-narrow line width spectral response, so that sensitivity of a nanosensor is effectively improved, and broad application prospect in the fields of portable biosensing, drug development and detection, environment monitoring and the like is ensured.
Abstract:
A device for high-speed real-time sampling of mid-infrared ultrafast light signals includes a time domain amplification unit and a detection unit. The time domain amplification unit is used to perform sampling and time domain amplification on signal light incident to the time domain amplification unit, and convert the signal light of a mid-infrared band into a near-infrared/visible band. The detection unit is used to receive and record information of the to-be-detected signal light processed by the time domain amplification unit to realize high-speed real-time sampling and measurement of the mid-infrared ultrafast light signal. The present disclosure can accurately obtain subpicosecond transient characteristics of the light signal, breaks through the capacity limit to the response rate of a traditional photoelectric detector, the bandwidth of the oscilloscope and the like, and is applicable to femtosecond-level mid-infrared ultrafast light signals.
Abstract:
The disclosure provides a dispersion management method and apparatus based on non-periodic spectral phase jumps. Precise dispersion is provided by virtue of non-periodic spectral phase jumps, the dispersion can be tuned freely with engineering of the phase jump. A device based on non-periodic spectral phase jump also has a wide working bandwidth and could promote the development of ultrafast optics. The method includes: spatially separating a light pulse with different frequency components, and meanwhile, making the light pulse with the different frequency components propagate in parallel; enabling the light pulse with the different frequency components and propagating in parallel to be incident on a non-periodic phase jump device to obtain non-periodic spectral phase jumps, forming a phase grating effect to obtain two ±1-order diffracted pulses having opposite group delays, and introducing frequency dependent relative delay for the different spectral components in the two diffracted pulses.
Abstract:
The present disclosure belongs to the field of optical measurement, and relates to a high-resolution real-time time-frequency domain measuring device and method for an ultra-short pulse. The technical problem of how to realize high-resolution real-time measurement of time-frequency domain information of the ultra-short pulse and improve the accuracy and reliability of a measurement result is solved. The measuring device includes a light splitting unit used to split signal light to be measured, a time lens unit used to perform time domain amplification on the signal light to be measured, a dispersion Fourier transform unit used to perform Fourier transform on the signal light to be measured, and a detection unit used to receive and detect measured data. The present disclosure uses the time lens and the dispersion Fourier transform technology to realize the real-time measurement of sub-picosecond transient characteristics of the ultra-short pulse to accurately obtain the time-frequency domain information of the ultra-short pulse, thereby breaking through the capacity limitation to the bandwidth of a traditional oscilloscope, the measuring speed of a spectrometer and the like, and the present disclosure is suitable for femtosecond-grade ultra-short pulses.