Abstract:
The present invention concerns a high throughput electrorotation chip having an array of electrorotation units and methods of use thereof. To make the high throughput electrorotation chip, a plurality of electrorotation units (EU) are fabricated on a substrate or support and each EU is capable of producing a rotating electric field upon the application of an appropriate electrical signal. Exemplary embodiments include a row-column configuration of EUs having four electrode elements realized through two conductive-layers. The electrode elements may be linear, concave, or convex. Thin plates having one or multiple holes are bound to high-throughput electrorotation chips to form assay chambers having one or multiple wells. Particles can be introduced to the wells and electrorotation measurements can be performed on the particles. The high throughput electrorotation chip and chamber may be used for cell-based screening for leading drug candidate molecules from a compound library, for high-throughput characterizing particle electric properties, and for high-throughput assaying molecular compositions of unknown solutions.
Abstract:
Particles are subjected to travelling wave field migration (TWFM) to migrate the particles over an array of microelectrodes. Altered particles are produced by treating original particles in such a way so as to alter their TWFM characteristics and the altered TWFM characteristics are employed for analysis and/or separation of the altered particles. The particles may be cells, bacteria, viruses, biomolecules or plastics microspheres. They may be altered by binding to a ligand such as a metal microparticle via a selective linking moiety such as an antibody/antigen or oligonucleic acid, or be physical or chemical treatments.
Abstract:
The present disclosure is directed to a novel apparatus and novel methods for the separtion, characterization, and manipulation of matter. In particular, the invention combines the use of frequency-dependent dielectric and conductive properties of particulate matter and solubilized matter with the properties of the suspending and transporting medium to discriminate and separate such matter. The apparatus includes a chamber having at least one electrode element and at least one inlet and one output port into which cells are introduced and removed from the chamber. Matter carried through the chamber in a fluid stream is then displaced within the fluid by a dielectrophoretic (DEP) force caused by the energized electrode. Following displacement within the fluid, matter travels through the chamber at velocities according to the velocity profile of the chamber. After the matter has transitted through the chamber, it exits at the opposite end of the chamber at a characteristic position. Methods according to the invention involve using the apparatus for discriminating and separating matter for research, diagnosis of a condition, and therapeutic purposes. Examples of such methods may include separation of mixtures of cells, such as cancer cells from normal cells, separation of parasitized erythrocytes from normal erythrocytes, separation of nucleic acids, and others.
Abstract:
The present disclosure is directed to a novel apparatus and novel methods for the separation, characterization, and manipulation of matter. In particular, the invention combines the use of frequency-dependent dielectric and conductive properties of particulate matter and solubilized matter with the properties of a suspending medium to discriminate and separate such matter. The apparatus includes a chamber having at least one spiral electrode element. Matter is separated in the chamber by a dielectrophoretic (DEP) force caused by the energized electrode or electrodes.
Abstract:
Particles are subjected to travelling wave field migration (TWFM) to migrate the particles over an array of microelectrodes. Altered particles are produced by treating original particles in such a way so as to alter their TWFM characteristics and the altered TWFM characteristics are employed for analysis and/or separation of the altered particles. The particles may be cells, bacteria, viruses, biomolecules or plastics microspheres. They may be altered by binding to a ligand such as a metal microparticle via a selective linking moiety such as an antibody/antigen or oligonucleic acid, or be physical or chemical treatments.
Abstract:
A device acts as a particle switch to transport and/or re-direct microparticles which are in a fluid suspension. The switch comprises at least three structural branches and the branches may be connected at a common junction. Particles can be transported along the branches as a result of the forces generated along that branch. Particles are transported into or out of the particle switch via the ends of the branches. Particles can be switched from one branch into one of the other branches. Depending on the properties of the particles, the transportation mechanism may be traveling-wave-dielectrophoresis or traveling-wave-electrophoresis.
Abstract:
The present disclosure is directed to a novel apparatus and novel methods for the separation, characterization, and manipulation of matter. In particular, the invention combines the use of frequency-dependent dielectric and conductive properties of particulate matter and solubilized matter with the properties of the suspending and transporting medium to discriminate and separate such matter. The apparatus includes a chamber having at least one electrode element and at least one inlet and one output port into which cells are introduced and removed from the chamber. Matter carried through the chamber in a fluid stream is then displaced within the fluid by a dielectrophoretic (DEP) force caused by the energized electrode. Following displacement within the fluid, matter travels through the chamber at velocities according to the velocity profile of the chamber. After the matter has transmitted through the chamber, it exits at the opposite end of the chamber at a characteristic position. Methods according to the invention involve using the apparatus for discriminating and separating matter for research, diagnosis of a condition, and therapeutic purposes. Examples of such methods may include separation of mixtures of cells, such as cancer cells from normal cells, separation of parasitized erythrocytes from normal erythrocytes, separation of nucleic acids, and others.
Abstract:
Techniques for generating a set of one or more materialized query table (MQT) candidates for a workload are provided. The techniques include receiving a workload, wherein the workload comprises a set of one or more queries, generating one or more best matching MQTs (BMQTs) based on one or more query blocks of the one or more queries by removing syntax that is not qualified for a MQT re-write, determining one or more frequently used multi-joins in the workload, using the one or more BMQTs and the one or more frequently used multi-joins to generate a set of one or more workload MQTs (WMQTs), and grouping one or more WMQTs and one or more BMQTs into one or more groups to merge into a set of a smaller number of MQTs and to cover the workload.
Abstract:
The present disclosure is directed to a novel apparatus and novel methods for the separation, characterization, and manipulation of matter. In particular, the invention combines the use of frequency-dependent dielectric and conductive properties of particulate matter and solubilized matter with the properties of the suspending and transporting medium to discriminate and separate such matter. The apparatus includes a chamber having at least one electrode element and at least one inlet and one output port into which cells are introduced and removed from the chamber. Matter carried through the chamber in a fluid stream is then displaced within the fluid by a dielectrophoretic (DEP) force caused by the energized electrode. Following displacement within the fluid, matter travels through the chamber at velocities according to the velocity profile of the chamber. After the matter has transitted through the chamber, it exists at the opposite end of the chamber at a characteristic position. Methods according to the invention involve using the apparatus for discriminating and separating matter for research, diagnosis of a condition, and therapeutic purposes. Examples of such methods may include separation of mixture of cells, such as cancer cells, separation of parasitized erythrocytes from normal erthrocytes, separation of nucleic acids, and others.
Abstract:
This invention relates generally to the field of field-flow-fractionation. In particular, the invention provides apparatuses and methods for the discrimination of matters utilizing acoustic force, or utilizing acoustic force with electrophoretic or dielectrophoretic force, in field flow fractionation.