Abstract:
A mold is configured to form a gel monolith including a first gel portion and a second gel portion. The mold includes a base including a first hydrophobic surface. The mold further includes a tubular outer wall including a second hydrophobic surface, and the outer wall is coupled to the base. The mold further includes a removable tubular insert including an inner surface and an outer hydrophobic surface. The insert is removably coupled to the base.
Abstract:
A method of manufacturing a xerogel monolith having a pore diameter distribution includes preparing a first solution comprising metal alkoxide and preparing a second solution comprising a catalyst. A third solution is prepared by mixing the first solution and the second solution together. At least one of the first, second, and third solutions is cooled to achieve a mixture temperature for the third solution which is substantially below room temperature, wherein the third solution has a significantly longer gelation time at the mixture temperature as compared to a room temperature gelation time for the third solution. The method further includes allowing the third solution to gel, thereby forming a wet gel monolith. The method further includes forming the xerogel monolith by drying the wet gel monolith.
Abstract:
A method of forming a gel monolith includes preparing a first solution comprising metal alkoxide and preparing a second solution comprising a catalyst. A third solution is prepared by mixing the first solution and the second solution together. At least one of the first, second, and third solutions is cooled to achieve a mixture temperature for the third solution which is substantially below room temperature, wherein the third solution has a significantly longer gelation time at the mixture temperature as compared to a room temperature gelation time for the third solution. The method further includes allowing the third solution to gel, thereby forming the gel monolith.
Abstract:
A method of preparing a solution for forming a doped gel monolith includes providing a first substance including a metal alkoxide. The method further includes providing a second substance including a catalyst. The method further includes providing a chemical including a dopant. The method further includes forming a solution including the dopant, said forming including mixing the first substance and the second substance together. The method further includes cooling the solution to a mixture temperature which is at or below zero degrees Celsius, wherein the solution has a significantly longer gelation time at the mixture temperature than at room temperature.
Abstract:
A method processes a gel monolith comprising pores filled with liquid, an inner region, and an outer region. The method includes removing a portion of the liquid from the pores of the gel monolith while both the inner and outer regions of the gel monolith remain wet. The method further includes shrinking the volume of the gel monolith during the removal of a portion of the liquid, with the gel monolith becoming correspondingly more dense. The method further includes subsequently removing substantially all of the remaining liquid from the pores of the gel monolith. Subsequently removing substantially all of the remaining liquid includes modulating a temperature gradient between the outer region and the inner region.
Abstract:
A method forms an optical fiber preform. The method includes forming a sol-gel-derived rod having a first diameter. Forming the sol-gel-derived rod includes preparing a sol-gel solution including at least 3 mole % of a catalyst. The sol-gel solution is allowed to undergo gelation to form a wet gel monolith. The wet gel monolith is dried and shrunk by exposing the wet gel monolith to a temporal temperature profile, thereby forming a xerogel monolith. The xerogel monolith is consolidated, thereby forming the sol-gel-derived rod. The method further includes drawing the sol-gel-derived rod to substantially reduce its diameter, thereby forming a drawn rod having a second diameter less than the first diameter.
Abstract:
A method of manufacturing a xerogel monolith having a pore diameter distribution includes preparing a first solution comprising metal alkoxide and preparing a second solution comprising a catalyst. A third solution is prepared by mixing the first solution and the second solution together. At least one of the first, second, and third solutions is cooled to achieve a mixture temperature for the third solution which is substantially below room temperature, wherein the third solution has a significantly longer gelation time at the mixture temperature as compared to a room temperature gelation time for the third solution. The method further includes allowing the third solution to gel, thereby forming a wet gel monolith. The method further includes forming the xerogel monolith by drying the wet gel monolith.