Abstract:
The present application provides novel aminoindane compounds and methods for preparing and using these compounds. These compounds are useful in treating pain and/or itch in patients by administering one or more of the compounds to a patient. The methods include administering a compound of formula (I) or (II) and a TRPV1 receptor activator. In one embodiment, the TRPV1 receptor activator is lidocaine.
Abstract:
An improved synthesis of a class of inhibitor of Focal Adhesion Kinase (FAK) is provided, wherein use of an expensive palladium-based catalyst is reduced and reaction yields and product purities are improved. Two key reactions of coupling of aryl halides with anilines are optimized with the surprising discovery that the palladium-based catalyst can be dispensed with entirely in one of the reactions. The invention also provides the use of the FAK-inhibitory compounds in the treatment of inflammatory and immune disorders and of arthritis.
Abstract:
A group of K data units received consecutively is arranged by a first device. The arranged K data units are sent to the inputs of M devices, and a group of Hj data units of the arranged K data units are transferred by a device j of the M devices. The data units sent to the devices of the M devices are arranged such that no two inputs of the devices of the M devices transferring receive the same data unit at any moment. A second device combines and arranges the K data units from the outputs of the M devices such that the K data units appear at the output of the second device consecutively, and a length of time gap between data units in a data switching network is shortened.
Abstract:
A connector includes a grounding terminal, a signal terminal and an insulating casing. The grounding terminal has an annular body and two grounding portions extending from the bottom of the annular body. The signal terminal has a substrate. One end of the substrate is provided with a soldering portion, and the other end of the substrate is bent to form a hollow cylindrical contacting portion. The contacting portion is disposed in the annular body of the grounding terminal. A wings is formed respectively by means of extending horizontally and outwards from two sides the end of the substrate having the contacting portion. The insulating body covers the grounding terminal and the signal terminal. The grounding portion of the grounding terminal and the soldering portion of the signal terminal extend outside the insulating casing respectively.
Abstract:
Video object cutting and pasting is described. In one implementation, pre-segmentation of video frames into regions is performed prior to a 3-D graph cut segmentation. The 3-D graph cut segmentation uses temporal coherence and a global color model to achieve accuracy of video object boundaries. A 2-D local graph cut segmentation can then be used to refine the boundaries. The boundaries can be tracked within a user-selected sequence of windows and refined using a local color model.
Abstract:
A system for integrating triangle setup and attribute setup operations into a programmable execution unit of a graphics processing unit is disclosed. A method for integrating triangle setup and attribute setup operations into a programmable execution unit graphics processing unit is also disclosed. In one embodiment, at least one execution unit is configured for multi-threaded operation. The at least one execution unit is configured to execute at least one thread for triangle setup operations and attribute setup operations as well as threads for pixel shader, geometry shader and vertex shader operations.
Abstract:
A method for shortening the length of time gaps between data units in a data switching network; the method comprising: arranging a group of K data units received consecutively at an input of a first device in K time units, where K is a positive integer; sending the arranged K data units to the inputs of M devices, where M is a positive integer; transferring a group of Hj data units of the arranged K data units by a device j of the M devices from its inputs to its outputs within a time unit Tx in the K unit time period, where Hj is a positive integer and the sum of Hj for j=1, . . . M is equal to K, where Hj≦K; arranging the data emits sent to the devices of the M devices transferring at time unit Tx such that no two inputs of the devices of the M devices transferring at time unit Tx receive the same data unit at any moment; and repeatedly combining and arranging the K data units from the outputs of the M devices by a second device such that the K data units appear at the output of the second device consecutively