Abstract:
A monitor provides a wireless signal with respective pulses, based on a heartbeat, repetitive physical movement, or other repetitive bodily action of a user. The pulses include longer duration pulses whose duration identifies the monitor, and distinguishes it from other monitors which may provide crosstalk interference. The longer duration pulses are interspersed among short duration pulses to reduce power consumption. The pulses are transmitted in successive cycles, where the number of the longer duration pulses is set adaptively in each cycle based on a detected rate, or rate of change, of respective instances of the bodily action. A receiver unit processes the signal to determine a rate of the bodily action and provide a corresponding output. The receiver unit can synchronize with two or more consecutive longer duration pulses. The pulse duration can be fixed or determined dynamically, e.g., non-deterministically.
Abstract:
A heart rate monitor determines a heart rate for a primary subject by reducing noise and cross-talk from unwanted signal transmission sources. A set of pulse peaks having about the same amplitude and an amplitude greater than any other set of peaks are processed to determine a subject's heart rate, while data having an amplitude below that of the set of peaks is ignored. To retrieve enough data to determine a peak amplitude, the signal having heart rate information is sampled at a frequency higher than a normal sampling frequency. In some embodiments, if no data is received for a set time period which is in or above the range, the threshold resets to zero under an assumption that the primary subject is no longer within transmitting range.
Abstract:
A heart rate monitor with analog and digital input mechanisms is provided with electro static discharge (ESD) protection which protects electrical components within the monitor. The heart rate monitor input mechanisms may include externally exposed sensors comprised of a conducting material, such as metal. The sensors may include push buttons, a dial, and one or more sensors for retrieving a heart rate signal, such as a case back for the monitor device. Internal circuitry such as an integrated circuit (IC) performs operations to provide time, a heart rate, and other information through a display. The ESD protection prevents any voltage discharge accumulating on the externally exposed sensors from reaching the one or more ICs and interrupting or negatively affecting performance of the monitor.
Abstract:
An ultrasonic monitor implemented on a PCB includes a transmission medium. The transmission medium may be biocompatible and implemented as an oil-based transmission medium, a gel pad, or a combination thereof. Ultrasonic signals are transmitted between the ultrasonic monitor and a living subject through the transmission medium. An air gap is formed in the PCB underneath transducer elements to provide for more efficient signal transmission. The entire ultrasonic monitor may be encapsulated in plastic, a transmission medium, or both to provide water resistant properties.
Abstract:
A heart rate monitor determines a heart rate for a primary subject by reducing noise and cross-talk from unwanted signal transmission sources. A set of pulse peaks having about the same amplitude and an amplitude greater than any other set of peaks are processed to determine a subject's heart rate, while data having an amplitude below that of the set of peaks is ignored. To retrieve enough data to determine a peak amplitude, the signal having heart rate information is sampled at a frequency higher than a normal sampling frequency. In some embodiments, if no data is received for a set time period which is in or above the range, the threshold resets to zero under an assumption that the primary subject is no longer within transmitting range.
Abstract:
Electro static discharge (ESD) protection is provided for electronic devices with integrated circuits, such as for example heart rate monitors. The ESD protection protects against voltage accumulation and discharge through device external parts that are connected to internal device circuitry. The ESD protection isolates the internal device circuitry and provides a low impedance path over which electro static charges and any transient voltages in the device may discharge. The integrated circuits, electrical components, and other parts protected from ESD may be connected to monitor circuitry and be externally exposed, such as sensing or measurement parts exposed outside the device. The external parts may include a sensing case back, sensing push-buttons, or other components that provide a signal to or are otherwise in communication with the internal device circuitry.
Abstract:
A subject's heart rate is determined by recognizing heart beat patterns in a heart beat signal. A heart rate monitor receives a Doppler signal reflected from an artery of a target, performs demodulation and heart beat recognition techniques on the received signal to determine a set or sequence of features in each frame of the signal. Once a feature sequence is extracted from the signal, pattern classification is performed to determine if the extracted feature sequence is associated with one or more heart beats. The pattern classification may include finding the optimal state sequence by calculating the probability of each allowable state sequence based on the extracted feature sequence and heart beat models or additional noise models. Another pattern classification technique may determine a heart beat candidate using frame energy and dynamic thresholding methods followed by computing the probabilities between the feature sequence and each stored heart beat model or additional noise models. A further pattern classification technique may identify heart beat candidates using frame energy and dynamic thresholding methods and compute the similarity between the feature sequences and each of the stored heart beat templates. Post-processing is applied to heart beat candidates to determine if the candidates are associated with a true heartbeat, noise or some other signal source. Once a true heart beat is identified, the subject heart rate is updated based on the detected heart beat and displayed for a user.
Abstract:
A monitor provides a wireless signal with respective pulses, based on a heartbeat, repetitive physical movement, or other repetitive bodily action of a user. The pulses include longer duration pulses whose duration identifies the monitor, and distinguishes it from other monitors which may provide crosstalk interference. The longer duration pulses are interspersed among short duration pulses to reduce power consumption. The pulses are transmitted in successive cycles, where the number of the longer duration pulses is set adaptively in each cycle based on a detected rate, or rate of change, of respective instances of the bodily action. A receiver unit processes the signal to determine a rate of the bodily action and provide a corresponding output. The receiver unit can synchronize with two or more consecutive longer duration pulses. The pulse duration can be fixed or determined dynamically, e.g., non-deterministically.
Abstract:
A subject's heart rate is determined. A heart rate monitor receives a Doppler signal reflected from an artery of a target, performs demodulation and heart beat recognition techniques to determine a set of features in each frame of the signal. Pattern classification is performed to determine if the extracted feature sequence is associated with heart beats. The pattern classification may include finding the optimal state sequence by calculating the probability of each allowable state sequence based on the extracted feature sequence and heart beat models or additional noise models. Or, a heart beat candidate is determined using frame energy and dynamic thresholding followed by computing the probabilities between the feature sequence and each stored heart beat model or additional noise models. Or, heart beat candidates are determined using frame energy and dynamic thresholding which compute the similarity between the feature sequences and each of the stored heart beat templates.
Abstract:
A heart rate monitor with analog and digital input mechanisms is provided with electro static discharge (ESD) protection which protects electrical components within the monitor. The heart rate monitor input mechanisms may include externally exposed sensors comprised of a conducting material, such as metal. The sensors may include push buttons, a dial, and one or more sensors for retrieving a heart rate signal, such as a case back for the monitor device. Internal circuitry such as an integrated circuit (IC) performs operations to provide time, a heart rate, and other information through a display. The ESD protection prevents any voltage discharge accumulating on the externally exposed sensors from reaching the one or more ICs and interrupting or negatively affecting performance of the monitor.