Abstract:
In a measurement apparatus, higher-quality measurement is realized in measurement of measurement object displacement or imaging of a two-dimensional image. In a controller, a light receiving signal of a photodiode is supplied to a displacement measuring unit of a sensor head in order to measure a height of a measurement object, and the height of a surface of the measurement object is measured based on the light receiving signal. Then, in the controller, image obtaining timing is determined based on the height of the measurement object. Specifically, a focus adjustment value corresponding to the computed height of the measurement object is obtained from the table, and an image obtaining signal is transmitted to an imaging device at the timing the focus adjustment value is realized. Therefore, a length between two points on the measurement object is computed from the thus obtained image based on the height of the measurement object.
Abstract:
In a measurement apparatus, higher-quality measurement is realized in measurement of measurement object displacement or imaging of a two-dimensional image. In a controller, a light receiving signal of a photodiode is supplied to a displacement measuring unit of a sensor head in order to measure a height of a measurement object, and the height of a surface of the measurement object is measured based on the light receiving signal. Then, in the controller, image obtaining timing is determined based on the height of the measurement object. Specifically, a focus adjustment value corresponding to the computed height of the measurement object is obtained from the table, and an image obtaining signal is transmitted to an imaging device at the timing the focus adjustment value is realized. Therefore, a length between two points on the measurement object is computed from the thus obtained image based on the height of the measurement object.
Abstract:
A target surface of a target object including portions having different curvatures is inspected by using an illuminating device and a camera that are fixed, a supporting device for supporting the target object such that its position and orientation are variable. The position and orientation of the target object are controlled as its image is obtained for a plurality of times. The position and orientation of the target object are controlled such that the image of any point on the target surface will be included in at least one of the images obtained by the camera.
Abstract:
A target surface of a target object including portions having different curvatures is inspected by using an illuminating device and a camera that are fixed, a supporting device for supporting the target object such that its position and orientation are variable. The position and orientation of the target object are controlled as its image is obtained for a plurality of times. The position and orientation of the target object are controlled such that the image of any point on the target surface will be included in at least one of the images obtained by the camera.
Abstract:
Light sources emit irradiation lights respectively, so that edge parts of mutual irradiation areas (inspection areas) are superposed one another. The imaging apparatus receives regular reflection lights and generates two images corresponding to each of the light sources. A main control part combines two images and determines presence/absence of a defect. By irradiating an inspected surface A with the irradiation lights from mutually different directions, a position of an area showing the defect in each image is slightly deviated. Therefore, even if a dimension of an area showing the defect is small in each image, by superposing two images one another, the dimension of the area showing a defect part becomes large in the image after composition. Thus, an accuracy of defect detection on the edge part of the inspection area can be improved.