Abstract:
A film stack includes co-stretched first and second layers. The first layer is stained with iodine and has a glass transition temperature of at least 5° C. greater than a glass transition temperature of the second layer. The second layer has in-plane birefringence of less than 0.02 and a retardance of less than 100 nm.
Abstract:
An optical stack includes an optical film (200) and an optical adhesive (500) disposed on the optical film. The optical adhesive has a major structured surface facing away from the optical film that includes a plurality of channels formed therein. The channels define a plurality of substantially flat land regions therebetween. The land regions include at least about 50% of a total surface area of the major structured surface. When the optical stack is placed on a support surface with the major structured surface of the optical adhesive contacting the support surface, the optical stack bonds to the support surface and may be removed from, or slidingly repositioned on, the support surface without damage to the optical adhesive or the support surface, and upon application of at least one of heat and pressure, the optical stack substantially permanently bonds to the support surface and the plurality of channels substantially disappear.
Abstract:
A coating composition is described comprising a polymerizable resin composition, a non-ionic unpolymerizable surfactant having an hydrophilic lipophilic balance ranging from 2 to 6, and a polymerizable surfactant. The surfactants are present at a concentration of greater than 10 wt-% solids. The non-ionic unpolymerizable surfactant and polymerizable surfactant are present at a weight ratio of less than 1.5:1. Also described are articles comprising the cured coating composition. The cured coating exhibits a property of an initially visible simulated fingerprint reducing in visibility within 60 minutes.
Abstract:
Optical bodies are described. In particular, optical bodies having a birefringent multilayer optical film and a continuous adhesive layer with a thickness less than 20 micrometers are described. Optical bodies described herein exhibit reduced occurrence and severity of a non-uniformity defect known as “orange peel.”
Abstract:
An optical film includes a plurality of alternating first and second polymeric layers, such that the first polymeric layers have a smaller average in-plane index of refraction than the second polymeric layers and the first polymeric layers have a glass transition temperature of at least 107 deg. C. The optical film may be a reflective polarizer. An optical stack includes a linear absorbing polarizer and the reflective polarizer disposed on, and bonded to, the absorbing polarizer. The reflective polarizer has an optical reflectance of at least 60% for a first polarization state and an optical transmittance of at least 60% for an orthogonal second polarization state. When heated at 105 deg. C. for 15 minutes, a difference in shrinkage of the reflective polarizer and the absorbing polarizer along the first and second polarization states is greater than about zero and 0.2%, respectively.
Abstract:
Optical stacks are described. In particular, optical stacks including reflecting-absorbing polarizers and quarter-wave plates are disclosed. The optical core of the optical stack—which includes a reflecting-absorbing polarizer with at least one skin layer including polarizing dye—may be co-extruded or co-stretched.
Abstract:
A coating composition is described comprising a polymerizable resin composition, a non-ionic unpolymerizable surfactant having an hydrophilic lipophilic balance ranging from 2 to 6, and a polymerizable surfactant. The surfactants are present at a concentration of greater than 10 wt-% solids. The non-ionic unpolymerizable surfactant and polymerizable surfactant are present at a weight ratio of less than 1.5:1. Also described are articles comprising the cured coating composition. The cured coating exhibits a property of an initially visible simulated fingerprint reducing in visibility within 60 minutes.
Abstract:
The present invention is a pressure sensitive adhesive including the reactive product of a copolymer of an alkyl(meth)acrylate, a multifunctional cross-linker, and at least one of an amine-containing (meth)acrylate and a blocked isocyanate-containing (meth)acrylate.
Abstract:
A backlight includes an extended light source adapted to emit light. A reflective polarizer is disposed on the extended light source, such that for substantially normally incident light and for at least a first wavelength in a range from about 420 nanometer (nm) to about 650 nm, the reflective polarizer reflects at least 60% of the incident light having a first polarization state and transmits at least 60% of the incident light having an orthogonal second polarization state. A first prismatic film is disposed between the extended light source and the reflective polarizer. A retarder layer is disposed between the reflective polarizer and the first prismatic film, such that for substantially normally incident light at a wavelength of about 550 nm, the retarder layer has a retardance nW, where n is an integer ≥1 and W is a wavelength between about 160 nm and about 300 nm.
Abstract:
Presently described are hardcoat compositions comprising at least one first (meth)acrylate monomer comprising at least three (meth)acrylate groups and C2-C4 alkoxy repeat units wherein the monomer has a molecular weight per (meth)acrylate group ranging from about 220 to 375 g/mole and at least one second (meth)acrylate monomer comprising at least three (meth)acrylate groups. The hardcoat composition further comprises inorganic oxide nanoparticles such as silica that comprises a copolymer izable surface treatment and a non-copolymerizable silane surface treatment. Also described are articles, such as protective films, displays, and touch screens comprising such cured hardcoat compositions.
Abstract translation:目前描述的是包含至少一种包含至少三个(甲基)丙烯酸酯基团和C 2 -C 4烷氧基重复单元的至少一种第一(甲基)丙烯酸酯单体的硬涂层组合物,其中该单体具有约220至375的(甲基)丙烯酸酯基团的分子量 g / mol和至少一种包含至少三个(甲基)丙烯酸酯基团的第(甲基)丙烯酸酯单体。 硬涂层组合物还包括无机氧化物纳米颗粒如二氧化硅,其包含可共聚的表面处理和不可共聚的硅烷表面处理。 还描述了诸如保护膜,显示器和包含这种固化的硬涂层组合物的触摸屏的制品。