Abstract:
A prismatic retroreflective sheeting includes a structured layer that includes a plurality of cube corner elements including a reduced tungsten oxide, a radiation-treated region, and a non-radiation-treated region. The prismatic retroreflective sheeting includes also includes an information-containing layer above the structured layer. The information-containing layer includes at least one indicia defining an edge. The radiation-treated region of the structured layer is adjacent and below at least part of the edge of the at least one indicia.
Abstract:
Curable printing ink compositions include a visible light transparent, UV-curable binder composition and a visible light transparent, and infrared light absorbing inorganic composition. The infrared light absorbing inorganic composition can include infrared absorbing nanoparticles. The ink compositions are capable of flexographic printing at room temperature to a thickness of at least 1.0 micrometer. The cured ink composition has an infrared absorbance of at least 50%. The ink compositions can be printed in patterns of geometric features and cured to form articles.
Abstract:
The present application generally relates to top films comprising a semi-crystalline core polymeric layer sandwiched by two amorphous skin layers, one on each side of the core polymeric layer. In preferred embodiments, an acrylic layer adjacent one of the amorphous skin layers is present as an outermost layer. The present application is also directed to retroreflective articles comprising such top films.
Abstract:
The present disclosure relates to segmented transfer tapes useful in the transfer of only a portion of the segments of the transfer tapes and methods of making thereof. The segmented transfer tapes include a removable template layer having a structured surface; a transfer layer comprising a backfill layer, wherein the backfill layer has a structured first major surface, and an adhesive layer; at least one transferable segment formed in the transfer layer; at least one non-transferable segment formed in the transfer layer, the at least one non-transferable segment includes an adhesive surface, wherein a passivating layer is disposed on at least a portion of the adhesive surface of the at least one non-transferrable segment; and at least one kerf extending from the first major surface of the adhesive layer and into at least a portion of the removable template layer. The present disclosure also provides micro-optical assemblies and methods of making micro-optical assemblies from the segmented transfer tapes.
Abstract:
Adhesive articles include a substrate with a first major surface and a second major surface, a layer of pressure sensitive adhesive with a first major surface and a second major surface, where the second major surface of the pressure sensitive adhesive layer is disposed on the first major surface of the substrate, and a plurality of non-pressure sensitive adhesive structures disposed on the first major surface of the pressure sensitive adhesive layer. The plurality of non-pressure sensitive adhesive structures are arrayed in a random or non-random pattern, and are applied to the first major surface of the pressure sensitive adhesive layer by direct contact printing. The articles may also include a microstructured release liner or conformable sheet covering the first major surface of the pressure sensitive adhesive layer and the plurality of non-pressure sensitive adhesive structures.
Abstract:
In general, techniques are described for a personal protective equipment (PPE) management system (PPEMS) that uses images of optical patterns embodied on articles of personal protective equipment (PPEs) to identify safety conditions that correspond to usage of the PPEs. In one example, an article of personal protective equipment (PPE) includes a first optical pattern embodied on a surface of the article of PPE; a second optical pattern embodied on the surface of the article of PPE, wherein a spatial relation between the first optical pattern and the second optical pattern is indicative of an operational status of the article of PPE.
Abstract:
In general, techniques are described for a personal protective equipment (PPE) management system (PPEMS) that uses images of optical patterns embodied on articles of personal protective equipment (PPEs) to identify safety conditions that correspond to usage of the PPEs. In one example, an article of personal protective equipment (PPE) includes a first optical pattern embodied on a surface of the article of PPE; a second optical pattern embodied on the surface of the article of PPE, wherein a spatial relation between the first optical pattern and the second optical pattern is indicative of an operational status of the article of PPE.
Abstract:
The present disclosure relates to micro-optical assemblies containing at least one optical element adhered to a receptor substrate, e.g. a transparent receptor substrate, the receptor substrate contains at least one graphics layer. The micro-optical assemblies include both functional micro-optical structures that can alter, for example, incident light, and a graphic layer, which includes at least one graphic, e.g. a graphic design, which may include color, patterns, imagery, indicia and the like. The combination of the micro-optical elements with the graphic of the graphics layer can provide unique light altering assemblies that have graphic designs that may be functional, e.g. to display a message, and/or have aesthetic value. The micro-optical assemblies of the present disclosure are useful in a variety of applications which include, but are not limited to, display and graphics applications and architectural glass applications. The present disclosure also provides a method of making the micro-optical assemblies of the present disclosure.