Abstract:
Provided are reactive compositions for making a polyurethane-based rain-erosion protective coating for rotor blades, the reactive composition comprising an isocyanate-reactive component and an isocyanate-functional component and wherein the isocyanate-reactive component comprises a first component i) being a short chain hydroxyl-functional compound having two terminal (α-ω) hydroxyl groups, a molecular weight of less than 250 g/mole and containing at least 2 carbon atoms and a second component ii) comprising a high molecular weight hydroxyl-functional compound having two terminal (α-ω) hydroxyl groups and a molecular weight of at least 250 g/mol and comprising one or more units selected from oxyalkylene units and polyoxyalkylene units and wherein the isocyanate-functional component is an isocyanate prepolymer of the general formula NCO—Z—NCO, wherein Z is a linking group comprising at least two urethane (—NH—CO—O—) units and additionally one or more units selected from alkylenes, oxyalkylenes, polyoxyalkylenes, alkylene esters, oxyalkylene esters, polyoxyalkylene esters and combinations thereof. Also provided are protective coatings obtained from the reactive compositions and methods of applying the coatings to articles.
Abstract:
The present disclosure relates generally to anti-soiling compositions, methods of applying anti-soiling compositions, and equipment for applying anti-soiling compositions. In some embodiments, the present disclosure relates to a method of forming a durable coating on a glass substrate, comprising: (1) applying a coating composition to a glass substrate, the applied coating composition having a thickness of greater than 4 microns; the coating composition consisting essentially of about 0.25% to about 10% by weight of non-oxidizing nanoparticles, an acid, and water; (2) allowing the coating composition to remain on the glass substrate for at least an amount of time sufficient to permit at least some of the nanoparticles to bond to the glass substrate; (3) reducing the thickness of the coating composition to about 0.25 to 4 microns, and (4) evaporating at least some of the water to form the durable coating.
Abstract:
Disclosed is a solar cell module, which comprises a solar cell module comprising a light transmitting element, a front encapsulant layer, a plurality of solar cells spaced from each other, a back encapsulant layer, and an encapsulation backsheet disposed in the module's thickness direction, the plurality of solar cells together forming a matrix which comprises a plurality of solar cell strings parallel with each other, each solar cell string being made up of a plurality of solar cells connected in series, there being a string gap formed between every two adjacent solar cell strings, and there being a cell gap formed between adjacent solar cells in each solar cell string, wherein the solar cell module further comprises a plurality of light redirecting films each of which comprises an optical structure, the light redirecting films being disposed on the solar cells' back surfaces opposite to their light receiving surfaces or the encapsulation backsheet's surface within the solar cell module, such that they spatially correspond to the string gaps and/or the cell gaps, and the optical structures being disposed to face the solar cell's back surfaces, such that the optical structures reflect light toward the interface between the light transmitting element and air, and the light is subsequently totally internally reflected back to the light receiving surfaces of the solar cells.
Abstract:
A coating composition is provided comprising nanoparticles and certain silane compounds. When applied to articles, particularly glass articles, the coating that is formed is resistant to soiling by both dry dust and wet soil.