Abstract:
A method for manufacturing/producing a dental restoration for a patient, where the method includes: obtaining a 3D scan of at least a restoration site of the patient's mouth, where the manufactured dental restoration is adapted for fitting to the restoration site; obtaining a computer-aided design (CAD design) of the dental restoration; milling the restoration from a material, where the restoration is milled both on an inside surface configured for fitting to the shape of the restoration site of the patient's mouth and on an outside surface, where the milling is according to the obtained CAD design; transferring the milled restoration to a retention means providing a fixed known position of the restoration relative to a post-processing machinery, where the restoration is retained on the inside surface, such that the outside surface of the restoration is approachable/free/accessible; and performing post-processing of the outside surface of the restoration.
Abstract:
A method for manufacturing/producing a dental restoration for a patient, where the method includes: obtaining a 3D scan of at least a restoration site of the patient's mouth, where the manufactured dental restoration is adapted for fitting to the restoration site; obtaining a computer-aided design (CAD design) of the dental restoration; milling the restoration from a material, where the restoration is milled both on an inside surface configured for fitting to the shape of the restoration site of the patient's mouth and on an outside surface, where the milling is according to the obtained CAD design; transferring the milled restoration to a retention means providing a fixed known position of the restoration relative to a post-processing machinery, where the restoration is retained on the inside surface, such that the outside surface of the restoration is approachable/free/accessible; and performing post-processing of the outside surface of the restoration.
Abstract:
A physical model of a set of teeth, wherein the physical model includes a gingival part in which a cavity comprising a cavity wall is formed; and a removable component having a part shaped as a tooth, where the removable component is configured for fitting into the cavity with a gap at an interface between the removable component and the cavity wall. The removable component or the cavity wall includes one or more supporting elements extending across the gap to establish contact between the removable component and the cavity wall to support and position the removable component in the cavity, and where contact between the removable component and the cavity wall at the interface only is provided by the supporting elements.
Abstract:
A method for scanning partly obstructed interior surfaces includes providing a probe shaped scanner having an axis. The scanner includes at least one light source configured to create and project structured light, and at least one camera configured to record 2D images. The method includes entering the probe shaped scanner into a cavity of an object, where the cavity is bounded by an interior surface of the object; creating and projecting structured light from the light source of the probe producing a pattern on the interior surface of the object; recording a series of 2D images of the reflection of the pattern from the interior surface using said camera; combining the series of 2D images to obtain 3D real world coordinates of the interior surface; and providing data and processing the data such that surface information for areas of the surface, where image scanning is not complete, is created.