Abstract:
The teachings herein disclose an advantageous method and apparatus for performing Security Constrained Economic Dispatch (SCED) for a hybrid power system that includes one or more AC grids interconnected with one or more multi-terminal High Voltage DC (HVDC) grids. The teachings include optimizing a non-linear objective function, subject to a set of constraints that include AC and DC grid constraints, for determining the SCED solution using successive linear approximation. The linear programming model used in the linear approximations is advantageously augmented with a DC grid portion in a manner that accounts for the effects of the DC grid on the AC grid, but which does not require exposing proprietary DC grid modeling details, and which conforms the resultant SCED solution to all applicable AC and DC grid constraints, including AC grid line flow constraints, AC grid power balance constraints, DC grid line flow constraints, and DC grid power balance constraints.
Abstract:
Power flow in a hybrid AC-DC power system is analyzed by determining DC power injection variables as a function of AC state information for common coupling buses which connect AC and DC grids. The AC state information includes voltage magnitude and phase angle information for the common coupling buses and buses in the AC grid(s). The DC power injection variables indicate AC power injection into the one or more AC grids at the common coupling buses from the DC grid(s). The AC state information is revised iteratively as a function of the DC power injection variables and the sensitivity of the DC power injection variables to the AC state information, and the DC power injection variables and the sensitivity of the DC power injection variables are revised iteratively as a function of the revised AC state information until the power mismatch is acceptable.
Abstract:
A power system grid is decomposed into several parts and decomposed state estimation steps are executed separately, on each part, using coordinated feedback regarding a boundary state. The achieved solution is the same that would be achieved with a simultaneous state estimation approach. With the disclosed approach, the state estimation problem can be distributed among decomposed estimation operations for each subsystem and a coordinating operation that yields the complete state estimate. The approach is particularly suited for estimating the state of power systems that are naturally decomposed into separate subsystems, such as separate AC and HVDC systems, and/or into separate transmission and distribution systems.
Abstract:
A power system grid is decomposed into several parts and decomposed state estimation steps are executed separately, on each part, using coordinated feedback regarding a boundary state. The achieved solution is the same that would be achieved with a simultaneous state estimation approach. With the disclosed approach, the state estimation problem can be distributed among decomposed estimation operations for each subsystem and a coordinating operation that yields the complete state estimate. The approach is particularly suited for estimating the state of power systems that are naturally decomposed into separate subsystems, such as separate AC and HVDC systems, and/or into separate transmission and distribution systems.
Abstract:
The teachings herein disclose an advantageous method and apparatus for performing Security Constrained Economic Dispatch (SCED) for a hybrid power system that includes one or more AC grids interconnected with one or more multi-terminal High Voltage DC (HVDC) grids. The teachings include optimizing a non-linear objective function, subject to a set of constraints that include AC and DC grid constraints, for determining the SCED solution using successive linear approximation. The linear programming model used in the linear approximations is advantageously augmented with a DC grid portion in a manner that accounts for the effects of the DC grid on the AC grid, but which does not require exposing proprietary DC grid modeling details, and which conforms the resultant SCED solution to all applicable AC and DC grid constraints, including AC grid line flow constraints, AC grid power balance constraints, DC grid line flow constraints, and DC grid power balance constraints.