Abstract:
A surge protective network signal processing circuit assembly includes a network chip, a network connector and a processing circuit including a plurality of two-wire channels electrically connected in parallel between the network chip and the network connector and a plurality of signal coupling capacitors respectively mounted in the two-wire channels and electrically connected in parallel and grounded for discharging instantaneous high voltage surges.
Abstract:
An impedance matching device-integrated network signal processing circuit includes a first connection terminal electrically connected to the network chip, a second connection terminal electrically connected to the network connector, a plurality of circuit paths electrically connected between the first connection terminal and the second connection terminal, a coupling circuit including a plurality of capacitors respectively connected in series to the circuit paths and a plurality of inductors respectively connected in parallel between each two adjacent circuit paths, and a plurality of impedance matching devices respectively electrically connected in series to each two adjacent circuit paths, each impedance matching device including two microstrip coils respectively electrically connected in series to each two adjacent circuit paths between the first connection terminal and respective the inductors to keep the impedance at the motherboard of the computer in balance with the impedance at the network cable, avoiding signal interference and achieving signal transmission stability.
Abstract:
A network signal processing circuit assembly includes a network-on-chip, a network connector, and a processing circuit including a plurality of channels respectively and electrically connected between the network-on-chip and the network connector, a plurality of signal coupling capacitors respectively electrically coupled to the channels, and a plurality of inductor sets electrically connected in parallel between the signal coupling capacitors and the network connector for causing a back-EMF (back-electro motive force) when receiving power supply from the signal coupling capacitors.
Abstract:
A magnetic device fabrication method includes the step of using molds to respectively process a first substrate and a second substrate into respective predetermined shapes, the step of forming conductors in shaped protruding blocks of the first substrate and conducting contacts in the second substrate, the step of attaching one or more magnetic cores to the first plate member to couple one or more positioning slots to the protruding blocks of the first plate member respectively and the step of bonding one or multiple magnetic cores between the first and second substrate to provide a continuous winding type induction coil effect, saving much manufacturing labor and time.
Abstract:
An inductor with conductive adhesive coil conductor includes an insulative plastic block including a block base, a positioning unit with U-shaped plates mounted in the block base and conductors respectively formed of a conductive adhesive on the U-shaped plates by transfer printing and isolated from one another, magnetic conductive components each including a magnetic core mounted in the base and defining therein slots for the passing of the U-shaped plates, and a connection carrier including a substrate and a wire array located on the substrate and electrically bonded with leads of the conductors to create with the magnetic cores a magnetic coil loop capable of providing a magnetic induction effect.
Abstract:
A surge protective network signal processing circuit assembly includes a network chip, a network connector, and a processing circuit connected between the network chip and the network connector and including one or multiple two-wire channels electrically connected in parallel between the network chip and the network connector, a signal coupling capacitor electrically connected to each two-wire channel and a self-coupling AC regulator electrically connected in parallel to each two-wire channel between the network connector and the associating signal coupling capacitor and electrically connected to a ground terminal for discharging voltage surge
Abstract:
An inductor with conductive adhesive coil conductor includes an insulative plastic block including a block base, a positioning unit with U-shaped plates mounted in the block base and conductors respectively formed of a conductive adhesive on the U-shaped plates by transfer printing and isolated from one another, magnetic conductive components each including a magnetic core mounted in the base and defining therein slots for the passing of the U-shaped plates, and a connection carrier including a substrate and a wire array located on the substrate and electrically bonded with leads of the conductors to create with the magnetic cores a magnetic coil loop capable of providing a magnetic induction effect.
Abstract:
A network signal coupling circuit installed in a circuit board and coupled between a network-on-chip and a network connector is disclosed to include a coupling module including a first capacitor connected in series to each wire of one respective two-wire channel of the signal coupling circuit thereof for coupling network signals and removing noises. Subject to the capacitance reactance characteristic that the signal attenuation is reduced when the frequency rises and the capacitive coupling characteristic that the signal coupling performance is enhanced when the frequency rises, the network signal coupling circuit assembly is practical for high frequency network applications to enhance signal coupling and transmission performance.
Abstract:
An inductor includes an insulative plastic block having a block base with a recessed open chamber, a positioning unit including odd-numbered rows of U-shaped plates and even-numbered rows of U-shaped plates arranged in a staggered manner in the recessed open chamber of the block base of the insulative plastic block, and a plurality of conductors respectively formed on the U-shaped plates and spaced from one another, each conductor having two opposite ends thereof respectively terminating in a lead outside the block base.
Abstract:
A magnetic device includes two substrates arranged in parallel with one substrate providing one or multiple protruding block and a plurality of conductors in each protruding block and the other substrate providing a plurality of conducting contacts respectively disposed in contact with the conductors, and one or multiple magnetic cores mounted between the two substrates and coupled to the one or multiple protruding blocks, each magnetic core having one or multiple positioning slots respectively configured for receiving one respective protruding block so that the conductors and the conducting contacts are electrically connected to create with the one or multiple magnetic cores multiple induction areas for providing a continuous winding type induction coil effect.