Abstract:
An optical compensation film is disclosed herein, which is made by uniaxially or biaxially stretching of a multilayer film including a first polymer film having a refractive index profile satisfying the equations of (nx+ny)/2≥nz and |nx−ny|
Abstract:
A polymer blend includes a combination of an acrylic polymer and a styrenic fluoropolymer. The polymer blend may be used to make polymer films having a single glass transition temperature, a polarizing plate, or a display device with enhanced optical properties.
Abstract:
Disclosed is an optical compensation film made of a solution cast of a polymer blend comprising a nitrated styrenic fluoropolymer and a polyimide. The compensation film is a positive-C plate having reversed wavelength dispersion that is capable of providing an achromatic (or broadband) retardation compensation. The optical film of the invention can be used in an optical device such as liquid crystal display (LCD) or organic light emitting diode (OLED) display.
Abstract:
Disclosed is an optical compensation film made of a solution cast of a polymer blend comprising a nitrated styrenic fluoropolymer and a polyimide. The compensation film is a positive-C plate having reversed wavelength dispersion that is capable of providing an achromatic (or broadband) retardation compensation. The optical film of the invention can be used in an optical device such as liquid crystal display (LCD) or organic light emitting diode (OLED) display.
Abstract:
Disclosed is a process for making nitrated styrenic fluoropolymers having various degrees of substitution. The nitrated styrenic fluoropolymer is capable of providing an exceptionally high birefringence ranging from 0.02 to 0.036. Further, the birefringence can be tuned by varying the degree of substitution (DS) of the nitro group on the styrenic ring to meet the need for optical compensation film applications. More particularly, the optical compensation films of the present invention are for use in an in-plane switching LCD (IPS-LCD) and OLED display.
Abstract:
A multilayer optical film includes a wave plate having a refractive index profile of nx>ny≧nz and a fluoropolymer film comprising a moiety of wherein R1, R2, and R3 are each independently hydrogen atoms, alkyl groups, substituted alkyl groups, or halogens, wherein at least one of R1, R2, and R3 is a fluorine atom, wherein R is each independently a substituent on the styrenic ring, n is an integer from 0 to 5 representing the number of the substituents on the styrenic ring, and wherein nx and ny represent in-plane refractive indices and nz the thickness-direction refractive index of the wave plates; wherein said multilayer optical film has a positive in-plane retardation (Re) and an out-of-plane retardation (Rth) that satisfies the equation of |Rth|
Abstract:
Disclosed is a multilayer optical compensation film comprising a first layer comprising a positive C-plate material and a second layer comprising a polyimide, as well as polymer compositions and resins and solutions containing said polymer compositions. The optical compensation film has a reversed wavelength dispersion that is capable of providing an achromatic (or broadband) retardation compensation. The optical film can be used in optical devices such as liquid crystal displays (LCD) or organic light emitting diode (OLED) displays.
Abstract:
A polymer blend includes a combination of an acrylic polymer and a styrenic fluoropolymer. The polymer blend may be used to make polymer films having a single glass transition temperature, a polarizing plate, or a display device with enhanced optical properties.
Abstract:
Disclosed is a process for making nitrated styrenic fluoropolymers having various degrees of substitution. The nitrated styrenic fluoropolymer is capable of providing an exceptionally high birefringence ranging from 0.02 to 0.036. Further, the birefringence can be tuned by varying the degree of substitution (DS) of the nitro group on the styrenic ring to meet the need for optical compensation film applications. More particularly, the optical compensation films of the present invention are for use in an in-plane switching LCD (IPS-LCD) and OLED display.
Abstract:
Disclosed is a multilayer optical compensation film comprising a first layer comprising a positive C-plate material and a second layer comprising a polyimide, as well as polymer compositions and resins and solutions containing said polymer compositions. The optical compensation film has a reversed wavelength dispersion that is capable of providing an achromatic (or broadband) retardation compensation. The optical film can be used in optical devices such as liquid crystal displays (LCD) or organic light emitting diode (OLED) displays.