Abstract:
A fiber optic cable having a plurality of buffer tubes and filler rods or filler tubes disposed between the inner surface of the outer jacket of the fiber optic cable and the buffer tubes. The buffer tubes contain a plurality of optical fibers. The filler rods have a non-round core surrounded by a suberabsorbant water swellable coating to provide protection for the optical fibers against the penetration of water within the cable. The filler rods and filler tubes are made of a solid or porous or foam-type material expanding in the presence of water.
Abstract:
A fiber optic buffer tube containing fiber optic ribbons centrally located within the buffer tube and a gel compound surrounding the fiber optic ribbons. Disposed within the gel compound, between the walls of the buffer tube and the fiber optic ribbons are water swellable yarns and/or particles. The water swellable yarns and/or particles volumetrically expand when in contact with water that has penetrated the buffer tube. The water swellable yarns/particles also provide greater surface area which helps to hold gel compound, at elevated temperature, within the tube and thus to prevent the fiber optic ribbons from coming into contact with the walls of the buffer tube, thereby preventing signal attenuation problems.
Abstract:
A fiber optic buffer tube containing fiber optic ribbons centrally located within the buffer tube and a gel compound surrounding the fiber optic ribbons. Disposed within the gel compound, between the walls of the buffer tube and the fiber optic ribbons are gel swellable yarns and/or particles. The gel swellable yarns/particles volumetrically expand when in contact with the gel compound causing greater force to hold the gel compound in place, especially when the fiber optic buffer is heated. The gel swellable yarns/particles also provide greater surface area and help to prevent the fiber optic ribbons from coming into contact with the walls of the buffer tube, thereby preventing signal attenuation problems.
Abstract:
An optical fiber cable including a buffer tube wherein the optical unit is maintained in an axial center location of the buffer tube and protected from contact with an inner wall of the buffer tube. At least first and second gel layers are interposed between the buffer tube and the optical unit, wherein the first gel layer surrounds the optical unit, the second gel layer surrounds the first gel layer, and the first and second gel layers have different rheological properties. The inner gel layer may have a yield stress and a viscosity which are lower than a yield stress and a viscosity of the outer gel layer. The lower yield stress and viscosity of the inner gel layer serves to maintain the optical unit in an axial center position within the buffer tube and facilitates easy re-positioning of the optical unit to the axial center position when the buffer tube is flexed or bent. As a result, the optical unit may be maintained in a low stress state and stress-induced attenuation may be prevented.
Abstract:
A fiber optic cable having skewed partitions is provided. Specifically, the fiber optic cable has a jacket, having an interior surface and exterior surface. A core element is centrally located within the jacket. Partitions extend from the core element to the interior surface in a skewed manner, thereby creating buffer cells within the fiber optic cable. A plurality of fiber ribbons and/or optic fibers may be housed within the buffer cells. The buffer cells ability to rotate and move the fibers sideways under crushing loads help protect the optic fibers and fiber ribbons from being crushed. Furthermore, the buffer cells provide a unique and optimal packaging configuration for high-fiber density cables.
Abstract:
An optical fiber cable configuration having a central strength member. The central strength member includes a hollow tube. One or more strength rods are disposed along or within the tube. To avoid water penetration, the tube is filled with a gel or water-absorbing powder, which provides a water barrier.
Abstract:
A buffer tube and fiber optic cable having an optimized ribbon stack packaging configuration, minimized attenuation problems and a reduced overall cable diameter and weight is provided. Specifically, a packaging configuration utilizing parallel lying and perpendicular lying fiber ribbons is configured into a ribbon stack having a square shape or cross-type configuration. Cushions may be placed between the high-fiber count ribbon stack and buffer tube walls thus enabling the ribbon stack to center itself within the tube thereby decreasing attenuation problems.
Abstract:
The present invention includes an optical fiber cable configuration comprising fibers that are grouped into buffer tubes or buffer cells, containing fiber bundles or ribbon stacks, using a lightweight fabric-type composite tape material to serve as a light-weight strength member and protective low-thermal-expansion sheath. A plurality of the buffer tubes or buffer cells of various shapes are then positioned upon another piece of composite tape material. Gel or foamy glue is placed on the tape and is used to secure the buffer tubes to the tape. A triangular or trapezoidal stack is then formed by rolling the tape to enclose the buffer tubes and excess gel serves to fill in gaps. Multiple stacks may then be stranded to form a larger super-cable structure that uses a piece of composite tape material along with the rolling process, as described above, to support the individual stacks.
Abstract:
An optical fiber cable configuration having a central strength member. The central strength member includes a hollow tube. One or more strength rods are disposed loosely in the hollow tube. To avoid water penetration, the hollow tube is filled with a gel or water-absorbing powder to provide a water barrier.
Abstract:
The present invention introduces a concept of nullsmartnull ribbons, which use functionally tensioned optical fibers during the manufacture of fiber optic ribbons to create fiber ribbons with controlled geometrical configuration, optimized strain distribution and reduced attenuation. The ribbons may have flat or bowed cross section and be straight along the length or curved in its plane, or twisted unidirectionally, or periodically. These shapes and residual stress-strain state are induced and controlled by using tension functions instead of traditional constant-value tension per fiber during the ribbon manufacture. Further, the present invention reduces signal loss and/or attenuation in ribbon fibers caused by an increase in the strain variation from tensile strain to compressive strain along the length of the individual fibers when ribbons are manufactured, stacked, stranded around a strength member or twisted and bent during cable installation. In the present invention, either a symmetric or non-symmetric load distribution is applied across the fibers being placed or drawn into a ribbon structure to eliminate or control residual twist in a completed fiber ribbon. Additionally, in the present invention, the load distribution on the fibers of a ribbon can be varied (e.g. periodically changed) along the length of the ribbon to provide a ribbon with the required design characteristics for any particular application.