Abstract:
A system may include an electronic display panel having pixels, where each pixel may emit light based on a respective programming signal. The system may include a memory storing a map. The processing circuitry may determine a function for each pixel from the map. The processing circuitry may determine a respective control signal based on the function and a target brightness level for each pixel to generate multiple control signals, where the respective control signal is used to generate the respective programing signal for each pixel. The processing circuitry may determine a scaling factor based at least in part on the first map and may scale at least a subset of the multiple control signals based at least in part on the scaling factor.
Abstract:
A display driver is disclosed that reduces first frame dimming and flicker in light-emitting diode pixels of a display device. The display driver may receive a display brightness value and determine a value of a dynamic supply voltage parameter based on the display brightness value. Over a first time interval, the display driver may apply a supply voltage that is based on the dynamic supply voltage parameter to one of a gate of a drive transistor of a light-emitting-diode circuit and a channel of the drive transistor. Over a second time interval, the display driver may apply a parking voltage to an anode of a light-emitting diode of the light-emitting-diode circuit and to the channel of the drive transistor. The value of the parking voltage may be below a threshold voltage of the light-emitting diode and correspond to the value of the dynamic supply voltage parameter.
Abstract:
A touch sensor panel is disclosed. The touch sensor panel can include a plurality of touch nodes, the plurality of touch nodes including a first set of touch nodes and a second set of touch nodes, different from the first set of the touch nodes. In some examples, sense circuitry can be configured to, during a first scan, sense a first combined touch signal of the first set of the touch nodes, and during a second scan, sense a second combined touch signal of the second set of the touch nodes. A touch processor can be configured to determine a touch image at the plurality of touch nodes based on the first and second combined touch signals.
Abstract:
A display may have curved edges such as rounded corners. Pixels in the display may be controlled so that the active area of the display has the desired curved edge shape. In order to maximize the apparent smoothness of the curved edge, the display may include circuitry that dims some of the pixels based on their location relative to a spline for the curved edge. The display circuitry may include a multiplication circuit that receives image data as a first input and dimming factors from a gain table as a second input. The image data may include a brightness level for each pixel in the array of pixels. The multiplication circuit may multiply the brightness level for each pixel by its respective dimming factor. This modified image data may then be supplied to the imaging pixels using display driver circuitry.
Abstract:
A touch sensor panel configured to switch between a mutual capacitance touch sensing architecture and a self-capacitance touch sensing architecture is provided. The touch sensor panel includes circuitry that can switch the configuration of touch electrodes to act as either drive lines in a mutual capacitance configuration or as sense electrodes in a self-capacitance configuration. The touch sensor panel also includes circuitry that can switch the configuration of touch electrodes to act as either sense lines in a mutual capacitance configuration or as sense electrode in a self-capacitance configuration. By splitting a self-capacitance touch mode into a drive line self-capacitive mode and sense line self-capacitive mode, the touch sensor panel is able to reuse components thus requiring less space, weight and power.
Abstract:
Systems, methods, and devices to control a transistor to maintain one or more substantially constant characteristics while activated or deactivated are provided. One such system includes a transistor that receives an activation signal on a gate terminal to become activated during a first period and receives a deactivation signal on the gate terminal to become deactivated during a second period. The transistor receives an input signal on an input terminal during the first period and the second period. The input signal varies during the first period and during the second period. The transistor may have improved reliability (e.g., substantially constant on resistance RON) because a first difference between the input signal and the activation signal substantially does not vary during the first period and a second difference between the input signal and the deactivation signal substantially does not vary during the second period.
Abstract:
Systems and methods are provided for adjusting and displaying image data to account for variable common voltage error across separate common electrode sub-plates. The image data may be adjusted based on a common mode common voltage error on a common voltage line coupled to more than one different common electrode sub-plate. Each common electrode sub-plate may carry a common voltage that varies depending on values of the image data programmed to pixels associated with that common electrode sub-plate.
Abstract:
Integrated touch screens are provided including drive lines formed of grouped-together circuit elements of a thin film transistor layer and sense lines formed between a color filter layer and a material layer that modifies or generates light. The common electrodes (Vcom) in the TFT layer can be grouped together during a touch sensing operation to form drive lines. Sense lines can be formed on a separate layer dedicated to only touch hardware.
Abstract:
Systems and processes for encoding and decoding touch signals output by a touch sensor are provided. In one example system, switching circuitry can be used to selectively couple each of the sense lines of a touch sensor to a positive terminal or a negative terminal of a sense amplifier based on the values of the elements of a matrix. The touch signals can be amplified and converted into digital form using a single sense amplifier and an ADC before being decoded using decoding circuitry. The decoding circuitry can decode the digital encoded touch signals by multiplying the digital encoded touch signals by each column of an inverse of the matrix used to encode the touch signals. The result of the decoding can be a set of signals that are representative of the touch signals output by the touch sensor.
Abstract:
An electronic device may include a display panel comprising a plurality of display pixels, an image source configured to store image data, and image processing circuitry. The image processing circuitry may receive the image data configured to be displayed by the plurality of display pixels, wherein the image data comprises gray level data for a first display pixel of the plurality of display pixels, convert the gray level data to first voltage data, and select a plurality of compensation maps based on a brightness level of the display panel. The image processing circuitry may also determine a voltage offset value based on the input voltage and the plurality of compensation maps, apply the voltage offset value to the first voltage data to generate compensated voltage data, and convert the compensated voltage data into compensated gray level data for the first display pixel.