Abstract:
A system and method are provided to support accommodating safe integration of small unmanned aircraft systems (sUASs) into the National Airspace Structure in the United States and to augment previously untracked aircraft positions by opportunistically acquiring their position information and forwarding this information to other systems for display. The disclosed schemes integrate automatic dependent surveillance-broadcast (ADS-B) capabilities in sUASs by providing an ADS-B receiver on the small unmanned aircraft or in association with a ground-based sUAS control and communication workstation. Processing of the ADS-B information is integrated with processing of acquired information on sUAS aerial platform operations. Processed integrated information is displayed locally on the workstation and transmitted to other facilities to be remotely displayed. Acquired position information for the sUAS aerial platform and manned aerial vehicles in a vicinity of the sUAS aerial platform are converted to formats commonly used by air traffic control systems.
Abstract:
A system and method are provided to support safe integration of small unmanned aircraft systems (sUASs) into the National Airspace Structure in the United States. Substantially real-time data communication provides interested parties with an ability to communicate directly with an operator of the sUAS during system operations. Individual interactive user interfaces are used to implement two way text-like messaging directly with the sUAS control console to enhance safety and reduce conflicts with operations of the sUAS. When an instance arises in which an air traffic controller needs to advise an sUAS operator regarding an unauthorized sUAS mission or a requirement to keep an sUAS clear of a specific block of airspace or specific geographic location due to an immediate, emergent and/or unforeseen event, a means is provided by which to more effectively and more quickly communicate directly with the sUAS operator.
Abstract:
A system and method are provided to support accommodating safe integration of small unmanned aircraft systems (sUASs) into the National Airspace Structure in the United States. A specifically-tailored service is provided to address a change of paradigm from aircraft-based avionics/capabilities to a ground-based solution centered on the sUAS control station that is typically employed to manage an sUAS mission and/or flight. Appropriate software, server and system components are integrated into an interactive, easy-to-use, web-based tool that provides interested parties with real-time, graphical flight-following information to acquire position information regarding an sUAS platform from the control console for the sUAS platform. The acquired position information is forwarded to a separate server that can augment and provide graphical display of the sUAS intended route of flight (flight planned route). The acquired position information for the sUAS is converted to a format commonly used by aviation and air traffic control systems.