Real-time GPU rendering with performance guaranteed power management

    公开(公告)号:US11954792B2

    公开(公告)日:2024-04-09

    申请号:US17408034

    申请日:2021-08-20

    Abstract: Systems, apparatuses, and methods for performing real-time video rendering with performance guaranteed power management are disclosed. A system includes at least a software driver, a power management unit, and a plurality of processing elements for performing rendering tasks. The system receives inputs which correspond to rendering tasks which need to be performed. The software driver monitors the inputs that are received and the number of rendering tasks to which they correspond. The software driver also monitors the amount of time remaining until the next video synchronization signal. The software driver determines which performance setting will minimize power consumption while still allowing enough time to finish the rendering tasks for the current frame before the next video synchronization signal. Then, the software driver causes the power management unit to provide this performance setting to the plurality of processing elements as they perform the rendering tasks for the current frame.

    Safety monitor for incorrect kernel computation

    公开(公告)号:US12045675B2

    公开(公告)日:2024-07-23

    申请号:US16457237

    申请日:2019-06-28

    Abstract: Systems, apparatuses, and methods for implementing a safety monitor framework for a safety-critical graphics processing unit (GPU) compute application are disclosed. A system includes a safety-critical GPU compute application, a safety monitor, and a GPU. The safety monitor receives a compute grid, test vectors, and a compute kernel from the safety-critical GPU compute application. The safety monitor generates a modified compute grid by adding extra tiles to the original compute grid, with the extra tiles generated based on the test vectors. The safety monitor provides the modified compute grid and compute kernel to the GPU for processing. The safety monitor determines the likelihood of erroneous processing of the original compute grid by comparing the actual results for the extra tiles with known good results. The safety monitor complements the overall fault coverage of the GPU hardware and covers faults only observable at the application programming interface (API) level.

    Real-time GPU rendering with performance guaranteed power management

    公开(公告)号:US11100698B2

    公开(公告)日:2021-08-24

    申请号:US16457179

    申请日:2019-06-28

    Abstract: Systems, apparatuses, and methods for performing real-time video rendering with performance guaranteed power management are disclosed. A system includes at least a software driver, a power management unit, and a plurality of processing elements for performing rendering tasks. The system receives inputs which correspond to rendering tasks which need to be performed. The software driver monitors the inputs that are received and the number of rendering tasks to which they correspond. The software driver also monitors the amount of time remaining until the next video synchronization signal. The software driver determines which performance setting will minimize power consumption while still allowing enough time to finish the rendering tasks for the current frame before the next video synchronization signal. Then, the software driver causes the power management unit to provide this performance setting to the plurality of processing elements as they perform the rendering tasks for the current frame.

    Safety monitor for invalid image transform

    公开(公告)号:US11971803B2

    公开(公告)日:2024-04-30

    申请号:US17548393

    申请日:2021-12-10

    Abstract: Systems, apparatuses, and methods for implementing a safety monitor framework for a safety-critical computer vision (CV) application are disclosed. A system includes a safety-critical CV application, a safety monitor, and a CV accelerator engine. The safety monitor receives an input image, test data, and a CV graph from the safety-critical CV application. The safety monitor generates a modified image by adding additional objects outside of the input image. The safety monitor provides the modified image and CV graph to the CV accelerator which processes the modified image and provides outputs to the safety monitor. The safety monitor determines the likelihood of erroneous processing of the original input image by comparing the outputs for the additional objects with a known good result. The safety monitor complements the overall fault coverage of the CV accelerator engine and covers faults only observable at the level of the CV graph.

    Safety monitor for image misclassification

    公开(公告)号:US11610142B2

    公开(公告)日:2023-03-21

    申请号:US16424162

    申请日:2019-05-28

    Abstract: Systems, apparatuses, and methods for implementing a safety monitor framework for a safety-critical inference application are disclosed. A system includes a safety-critical inference application, a safety monitor, and an inference accelerator engine. The safety monitor receives an input image, test data, and a neural network specification from the safety-critical inference application. The safety monitor generates a modified image by adding additional objects outside of the input image. The safety monitor provides the modified image and neural network specification to the inference accelerator engine which processes the modified image and provides outputs to the safety monitor. The safety monitor determines the likelihood of erroneous processing of the original input image by comparing the outputs for the additional objects with a known good result. The safety monitor complements the overall fault coverage of the inference accelerator engine and covers faults only observable at the network level.

    SAFETY MONITOR FOR IMAGE MISCLASSIFICATION
    6.
    发明申请

    公开(公告)号:US20200380383A1

    公开(公告)日:2020-12-03

    申请号:US16424162

    申请日:2019-05-28

    Abstract: Systems, apparatuses, and methods for implementing a safety monitor framework for a safety-critical inference application are disclosed. A system includes a safety-critical inference application, a safety monitor, and an inference accelerator engine. The safety monitor receives an input image, test data, and a neural network specification from the safety-critical inference application. The safety monitor generates a modified image by adding additional objects outside of the input image. The safety monitor provides the modified image and neural network specification to the inference accelerator engine which processes the modified image and provides outputs to the safety monitor. The safety monitor determines the likelihood of erroneous processing of the original input image by comparing the outputs for the additional objects with a known good result. The safety monitor complements the overall fault coverage of the inference accelerator engine and covers faults only observable at the network level.

    Safety monitor for invalid image transform

    公开(公告)号:US11210199B2

    公开(公告)日:2021-12-28

    申请号:US16427941

    申请日:2019-05-31

    Abstract: Systems, apparatuses, and methods for implementing a safety monitor framework for a safety-critical computer vision (CV) application are disclosed. A system includes a safety-critical CV application, a safety monitor, and a CV accelerator engine. The safety monitor receives an input image, test data, and a CV graph from the safety-critical CV application. The safety monitor generates a modified image by adding additional objects outside of the input image. The safety monitor provides the modified image and CV graph to the CV accelerator which processes the modified image and provides outputs to the safety monitor. The safety monitor determines the likelihood of erroneous processing of the original input image by comparing the outputs for the additional objects with a known good result. The safety monitor complements the overall fault coverage of the CV accelerator engine and covers faults only observable at the level of the CV graph.

    REAL-TIME GPU RENDERING WITH PERFORMANCE GUARANTEED POWER MANAGEMENT

    公开(公告)号:US20210383596A1

    公开(公告)日:2021-12-09

    申请号:US17408034

    申请日:2021-08-20

    Abstract: Systems, apparatuses, and methods for performing real-time video rendering with performance guaranteed power management are disclosed. A system includes at least a software driver, a power management unit, and a plurality of processing elements for performing rendering tasks. The system receives inputs which correspond to rendering tasks which need to be performed. The software driver monitors the inputs that are received and the number of rendering tasks to which they correspond. The software driver also monitors the amount of time remaining until the next video synchronization signal. The software driver determines which performance setting will minimize power consumption while still allowing enough time to finish the rendering tasks for the current frame before the next video synchronization signal. Then, the software driver causes the power management unit to provide this performance setting to the plurality of processing elements as they perform the rendering tasks for the current frame.

    SAFETY MONITOR FOR INVALID IMAGE TRANSFORM
    9.
    发明申请

    公开(公告)号:US20200379877A1

    公开(公告)日:2020-12-03

    申请号:US16427941

    申请日:2019-05-31

    Abstract: Systems, apparatuses, and methods for implementing a safety monitor framework for a safety-critical computer vision (CV) application are disclosed. A system includes a safety-critical CV application, a safety monitor, and a CV accelerator engine. The safety monitor receives an input image, test data, and a CV graph from the safety-critical CV application. The safety monitor generates a modified image by adding additional objects outside of the input image. The safety monitor provides the modified image and CV graph to the CV accelerator which processes the modified image and provides outputs to the safety monitor. The safety monitor determines the likelihood of erroneous processing of the original input image by comparing the outputs for the additional objects with a known good result. The safety monitor complements the overall fault coverage of the CV accelerator engine and covers faults only observable at the level of the CV graph.

    SAFETY MONITOR FOR IMAGE MISCLASSIFICATION
    10.
    发明公开

    公开(公告)号:US20230230367A1

    公开(公告)日:2023-07-20

    申请号:US18186061

    申请日:2023-03-17

    CPC classification number: G06V10/776 G06V10/82 G06V10/764 G06V10/98

    Abstract: Systems, apparatuses, and methods for implementing a safety monitor framework for a safety-critical inference application are disclosed. A system includes a safety-critical inference application, a safety monitor, and an inference accelerator engine. The safety monitor receives an input image, test data, and a neural network specification from the safety-critical inference application. The safety monitor generates a modified image by adding additional objects outside of the input image. The safety monitor provides the modified image and neural network specification to the inference accelerator engine which processes the modified image and provides outputs to the safety monitor. The safety monitor determines the likelihood of erroneous processing of the original input image by comparing the outputs for the additional objects with a known good result. The safety monitor complements the overall fault coverage of the inference accelerator engine and covers faults only observable at the network level.

Patent Agency Ranking