Abstract:
A liquid crystal display includes a liquid crystal panel, a source driving circuit, a timing controller, and a gate driving circuit. The source driving circuit converts frame data into a plurality of data voltages, and charges/discharges a first data line according to a data voltage of the plurality of data voltages. The gate driving circuit enables a gate line corresponding to the data voltage. The timing controller sequentially enables a plurality of switch enable lines corresponding to the gate line. A plurality of pixel switches are turned on according to the enabled gate line. A data line switch is turned on according to an enabled switch enable line. The data voltage charges/discharges a corresponding pixel through the turned-on data line switch and one of the turned-on pixel switches.
Abstract:
A shift register includes a plurality of shift register circuits, where an Nth shift register circuit of the shift register includes a driving unit, a boost unit, a pull up unit, and a key pull down unit. The driving unit is for providing a gate signal, a first boost control signal, and a first transmission control signal according a first driving signal and a high frequency clock signal. The boost unit is for boosting the voltage of the first driving signal according to a first boost signal. The pull up unit is for providing a second driving signal according to the first transmission control signal and the gate signal, and is for providing a second boost signal according to the first boost control signal and a second boost control signal. The key pull down unit is for pulling down the first driving signal according to a second transmission control signal.
Abstract:
A shift register circuit includes plural shift register stages for providing plural gate signals. Each shift register stage includes a pull-up unit, a pull-up control unit, an input unit, a first pull-down unit, a second pull-down unit, and a pull-down control unit. The pull-up control unit generates a first control signal according to a driving control voltage and a first clock. The pull-up unit pulls up a corresponding gate signal according to the first control signal. The input unit is utilized for inputting the gate signal of a preceding shift register stage to become the driving control voltage according to a second clock having a phase opposite to the first clock. The pull-down control unit generates a second control signal according to the driving control voltage. The first and second pull-down units pull down the corresponding gate signal and the first control signal respectively according to the second control signal.
Abstract:
A shift register circuit includes plural shift register stages for providing plural gate signals. Each shift register stage includes a pull-up unit, a pull-up control unit, an input unit, a first pull-down unit, a second pull-down unit, and a pull-down control unit. The pull-up control unit generates a first control signal according to a driving control voltage and a first clock. The pull-up unit pulls up a corresponding gate signal according to the first control signal. The input unit is utilized for inputting the gate signal of a preceding shift register stage to become the driving control voltage according to a second clock having a phase opposite to the first clock. The pull-down control unit generates a second control signal according to the driving control voltage. The first and second pull-down units pull down the corresponding gate signal and the first control signal respectively according to the second control signal.
Abstract:
A shift register includes a plurality of shift register circuits, where an Nth shift register circuit of the shift register includes a driving unit, a boost unit, a pull up unit, and a key pull down unit. The driving unit is for providing a gate signal, a first boost control signal, and a first transmission control signal according a first driving signal and a high frequency clock signal. The boost unit is for boosting the voltage of the first driving signal according to a first boost signal. The pull up unit is for providing a second driving signal according to the first transmission control signal and the gate signal, and is for providing a second boost signal according to the first boost control signal and a second boost control signal. The key pull down unit is for pulling down the first driving signal according to a second transmission control signal.
Abstract:
A liquid crystal display includes a liquid crystal panel, a source driving circuit, a timing controller, and a gate driving circuit. The source driving circuit converts frame data into a plurality of data voltages, and charges/discharges a first data line according to a data voltage of the plurality of data voltages. The gate driving circuit enables a gate line corresponding to the data voltage. The timing controller sequentially enables a plurality of switch enable lines corresponding to the gate line. A plurality of pixel switches are turned on according to the enabled gate line. A data line switch is turned on according to an enabled switch enable line. The data voltage charges/discharges a corresponding pixel through the turned-on data line switch and one of the turned-on pixel switches.
Abstract:
A liquid crystal display includes a liquid crystal panel, a source driving circuit, a timing controller, and a gate driving circuit. The source driving circuit converts frame data into a plurality of data voltages, and charges/discharges a first data line according to a data voltage of the plurality of data voltages. The gate driving circuit enables a gate line corresponding to the data voltage. The timing controller sequentially enables a plurality of switch enable lines corresponding to the gate line. A plurality of pixel switches are turned on according to the enabled gate line. A data line switch is turned on according to an enabled switch enable line. The data voltage charges/discharges a corresponding pixel through the turned-on data line switch and one of the turned-on pixel switches.