Abstract:
A method for controlling activation of a cross-linking agent applied to an eye includes applying the cross-linking agent to a selected region of a cornea of the eye and initiating cross-linking activity in the selected region by activating the cross-linking agent with pulsed light illumination. The pulsed light illumination has a selectable wavelength, irradiance, dose, and on/off duty cycle. The wavelength, the irradiance, the dose, and the on/off duty cycle are adjusted in response to a determination of photochemical kinetic pathways for cross-linking activity and to control photochemical efficiency, depth of cross-linking, and density of cross-linking.
Abstract:
Devices and approaches for activating cross-linking within corneal tissue to stabilize and strengthen the corneal tissue following an eye therapy treatment. A feedback system is provided to acquire measurements and pass feedback information to a controller. The feedback system may include an interferometer system, a corneal polarimetry system, or other configurations for monitoring cross-linking activity within the cornea. The controller is adapted to analyze the feedback information and adjust treatment to the eye based on the information. Aspects of the feedback system may also be used to monitor and diagnose features of the eye. Methods of activating cross-linking according to information provided by a feedback system in order to improve accuracy and safety of a cross-linking therapy are also provided.
Abstract:
Devices and approaches for monitoring time based photo active agent delivery or photo active marker presence in an eye. A monitoring system is provided for measuring the presence of a photo active marker by illuminating the eye so as to excite the photo-active marker and then observing characteristic emission from the photo active marker. Example systems incorporate Scheimpflug optical systems or slit lamp optical systems to observe cross sectional images of an eye to monitor instantaneous distribution, diffusion pattern, and rate of uptake of a photo active agent applied to an eye. Systems and methods further allow for utilizing the monitored distribution of photo active agent in the eye as feedback for a cross-linking system.
Abstract:
Devices and approaches for activating cross-linking within corneal tissue to stabilize and strengthen the corneal tissue following an eye therapy treatment. A feedback system is provided to acquire measurements and pass feedback information to a controller. The feedback system may include an interferometer system, a corneal polarimetry system, or other configurations for monitoring cross-linking activity within the cornea. The controller is adapted to analyze the feedback information and adjust treatment to the eye based on the information. Aspects of the feedback system may also be used to monitor and diagnose features of the eye. Methods of activating cross-linking according to information provided by a feedback system in order to improve accuracy and safety of a cross-linking therapy are also provided.
Abstract:
Devices and approaches for monitoring time based photo active agent delivery or photo active marker presence in an eye. A monitoring system is provided for measuring the presence of a photo active marker by illuminating the eye so as to excite the photo-active marker and then observing characteristic emission from the photo active marker. Example systems incorporate Scheimpflug optical systems or slit lamp optical systems to observe cross sectional images of an eye to monitor instantaneous distribution, diffusion pattern, and rate of uptake of a photo active agent applied to an eye. Systems and methods further allow for utilizing the monitored distribution of photo active agent in the eye as feedback for a cross-linking system.