Object selection for images using image regions

    公开(公告)号:US12260557B2

    公开(公告)日:2025-03-25

    申请号:US17838995

    申请日:2022-06-13

    Applicant: ADOBE INC.

    Abstract: An image processing system generates an image mask from an image. The image is processed by an object detector to identify a region having an object, and the region is classified based on an object type of the object. A masking pipeline is selected from a number of masking pipelines based on the classification of the region. The region is processed using the masking pipeline to generate a region mask. An image mask for the image is generated using the region mask.

    DIGITAL IMAGE INPAINTING UTILIZING GLOBAL AND LOCAL MODULATION LAYERS OF AN INPAINTING NEURAL NETWORK

    公开(公告)号:US20250054116A1

    公开(公告)日:2025-02-13

    申请号:US18929330

    申请日:2024-10-28

    Applicant: Adobe Inc.

    Abstract: The present disclosure relates to systems, methods, and non-transitory computer readable media that generate inpainted digital images utilizing a cascaded modulation inpainting neural network. For example, the disclosed systems utilize a cascaded modulation inpainting neural network that includes cascaded modulation decoder layers. For example, in one or more decoder layers, the disclosed systems start with global code modulation that captures the global-range image structures followed by an additional modulation that refines the global predictions. Accordingly, in one or more implementations, the image inpainting system provides a mechanism to correct distorted local details. Furthermore, in one or more implementations, the image inpainting system leverages fast Fourier convolutions block within different resolution layers of the encoder architecture to expand the receptive field of the encoder and to allow the network encoder to better capture global structure.

    UTILIZING A DEPTH PREDICTION MACHINE LEARNING MODEL TO GENERATE COMPRESSED LOG DEPTH MAPS AND MODIFIED DIGITAL IMAGES

    公开(公告)号:US20250014201A1

    公开(公告)日:2025-01-09

    申请号:US18887334

    申请日:2024-09-17

    Applicant: Adobe Inc.

    Inventor: Jianming Zhang

    Abstract: The present disclosure relates to systems, non-transitory computer-readable media, and methods for training and/or implementing machine learning models utilizing compressed log scene measurement maps. For example, the disclosed system generates compressed log scene measurement maps by converting scene measurement maps to compressed log scene measurement maps by applying a logarithmic function. In particular, the disclosed system uses scene measurement distribution metrics from a digital image to determine a base for the logarithmic function. In this way, the compressed log scene measurement maps normalize ranges within a digital image and accurately differentiates between scene elements objects at a variety of depths. Moreover, for training, the disclosed system generates a predicted scene measurement map via a machine learning model and compares the predicted scene measurement map with a compressed log ground truth map. By doing so, the disclosed system trains the machine learning model to generate accurate compressed log depth maps.

    Generating and utilizing pruned neural networks

    公开(公告)号:US11983632B2

    公开(公告)日:2024-05-14

    申请号:US18309367

    申请日:2023-04-28

    Applicant: Adobe Inc.

    CPC classification number: G06N3/082 G06N3/04

    Abstract: The disclosure describes one or more implementations of a neural network architecture pruning system that automatically and progressively prunes neural networks. For instance, the neural network architecture pruning system can automatically reduce the size of an untrained or previously-trained neural network without reducing the accuracy of the neural network. For example, the neural network architecture pruning system jointly trains portions of a neural network while progressively pruning redundant subsets of the neural network at each training iteration. In many instances, the neural network architecture pruning system increases the accuracy of the neural network by progressively removing excess or redundant portions (e.g., channels or layers) of the neural network. Further, by removing portions of a neural network, the neural network architecture pruning system can increase the efficiency of the neural network.

Patent Agency Ranking