Abstract:
A fluid storage and dispensing apparatus including a fluid storage and dispensing vessel having a rectangular parallelepiped shape, and an integrated gas cabinet assembly including such fluid storage and dispensing apparatus and/or a point-of-use ventilation gas scrubber in the vented gas cabinet. By the use of physical adsorbent and chemical sorbent media, the gas cabinet can be enhanced in safety of operation, e.g., where the process gas supplied from the gas cabinet is of a toxic or otherwise hazardous character.
Abstract:
A carbon adsorbent adapted for adsorptive storage and subsequent desorptive release of a decomposition-susceptible gas is described. Such carbon adsorbent comprises porosity in which mesopore volume is less than 0.25 cm3/gm of carbon adsorbent, in which the porosity comprises at least 80% by volume micropores, and at least 65% by volume of the micropores have pore diameter in a range of from 0.3 to 0.72 nm. The carbon adsorbent has a nitrogen adsorption BET surface area greater than 800 m2/g of carbon adsorbent, measured at 77° K, and a bulk density that is greater than 0.55 g/cc of carbon adsorbent. The carbon adsorbent can be utilized in gas storage and dispensing packages of varying type, to provide a safe and reliable source of decomposition-susceptible gas, e.g., acetylene for applications such as gas welding/cutting applications, atomic absorption spectroscopy applications, chemical synthesis and microelectronic products manufacturing.
Abstract:
A carbon adsorbent adapted for adsorptive storage and subsequent desorptive release of a decomposition-susceptible gas is described. Such carbon adsorbent comprises porosity in which mesopore volume is less than 0.25 cm3/gm of carbon adsorbent, in which the porosity comprises at least 80% by volume micropores, and at least 65% by volume of the micropores have pore diameter in a range of from 0.3 to 0.72 nm. The carbon adsorbent has a nitrogen adsorption BET surface area greater than 800 m2/g of carbon adsorbent, measured at 77° K, and a bulk density that is greater than 0.55 g/cc of carbon adsorbent. The carbon adsorbent can be utilized in gas storage and dispensing packages of varying type, to provide a safe and reliable source of decomposition-susceptible gas, e.g., acetylene for applications such as gas welding/cutting applications, atomic absorption spectroscopy applications, chemical synthesis and microelectronic products manufacturing.
Abstract:
A pyrolyzed monolith carbon physical adsorbent that is characterized by at least one of the following characteristics: (a) a fill density measured for arsine gas at 25° C. and pressure of 650 torr that is greater than 400 grams arsine per liter of adsorbent; (b) at least 30% of overall porosity of the adsorbent including slit-shaped pores having a size in a range of from about 0.3 to about 0.72 nanometer, and at least 20% of the overall porosity including micropores of diameter
Abstract:
A pyrolyzed monolith carbon physical adsorbent that is characterized by at least one of the following characteristics: (a) a fill density measured for arsine gas at 25° C. and pressure of 650 torr that is greater than 400 grams arsine per liter of adsorbent; (b) at least 30% of overall porosity of the adsorbent including slit-shaped pores having a size in a range of from about 0.3 to about 0.72 nanometer, and at least 20% of the overall porosity including micropores of diameter
Abstract:
A durable carbon pyrolyzate adsorbent having reversible sorptive affinity for hydrogen sulfide, and including the following characteristics: (a) a bulk density as measured by ASTM D2854 in a range of from 0.55 g/cc adsorbent to 1.25 g/cc adsorbent; (b) an H2S capacity in a range of from 140 cc H2S/g adsorbent to 250 cc H2S/g adsorbent, at normal conditions (1 atm, 293.15° K); (c) an H2S capacity in a range of from 1.0 cc H2S/g adsorbent to 15.0 cc H2S/g adsorbent, at partial pressure of 0.76 ton (101.3 Pa) (1000 ppm) of H2S at 293.15° K; and (d) a single pellet radial crush strength in a range of from 7 kilopond (kP) to 40 kilopond (kP) as measured by ASTM D4179. Such adsorbent is usefully employed for capture of hydrogen sulfide from gases containing same, such as H2S-containing gas associated with flowable hydrocarbonaceous material in refining operations, biogas produced by biomass digesters, gas mixtures produced by fluid catalytic cracking (FCC) units, and effluents from power plants gasifying sulfur-containing coal in an integrated gasification combined cycle (IGCC) process.
Abstract translation:具有对硫化氢具有可逆吸附亲和力的耐久碳热解物吸附剂,并且包括以下特征:(a)通过ASTM D2854测量的在0.55g / cc吸附剂至1.25g / cc吸附剂范围内的堆积密度; (b)在正常条件(1大气压,293.15°K)下,在140cc H2S / g吸附剂至250cc H2S / g吸附剂的范围内的H2S容量; (c)在293.15°K的分压为0.76吨(101.3Pa)(1000ppm)的H 2 S下,在1.0cc H 2 S / g吸附剂至15.0cc H 2 S / g吸附剂范围内的H 2 S容量; 和(d)通过ASTM D4179测量的单个颗粒径向压实强度在7千帕(kP)至40千碱基(kP)的范围内。 这种吸附剂有用地用于从含有其的气体中捕获硫化氢,例如在精炼操作中与可流动的烃类材料相关的含H 2 S的气体,由生物质消化器产生的沼气,由流化催化裂化(FCC)单元产生的气体混合物,以及流出物 来自发电厂在一体化气化联合循环(IGCC)过程中气化含硫煤。
Abstract:
A fluid storage and dispensing apparatus including a fluid storage and dispensing vessel having a rectangular parallelepiped shape, and an integrated gas cabinet assembly including such fluid storage and dispensing apparatus and/or a point-of-use ventilation gas scrubber in the vented gas cabinet. By the use of physical adsorbent and chemical sorbent media, the gas cabinet can be enhanced in safety of operation, e.g., where the process gas supplied from the gas cabinet is of a toxic or otherwise hazardous character.
Abstract:
An adsorption structure is described that includes at least one adsorbent member formed of an adsorbent material and at least one porous member provided in contact with a portion of the adsorbent member to allow gas to enter and exit the portion of the adsorbent member. Such adsorption structure is usefully employed in adsorbent-based refrigeration systems. A method also is described for producing an adsorbent material, in which a first polymeric material provided having a first density and a second polymeric material is provided having a second density, in which the second polymeric material is in contact with the first polymeric material to form a structure. The structure is pyrolyzed to form a porous adsorbent material including a first region corresponding to the first polymeric material and a second region corresponding to the second polymeric material, in which at least one of the pore sizes and the pore distribution differs between the first region and the second region.
Abstract:
A system and method for recovering high value gas from a process stream, material or environment containing same, e.g., xenon by contacting gas from the process stream, material or environment with a carbon adsorbent effective to sorptively capture same, free of or with reduced concentration of fluid species present with the high value gas in the high value gas-containing gas in the process stream, material or environment. Other aspects of the disclosure include a radon detection method and product.
Abstract:
A system and method for recovering high value gas from a process stream, material or environment containing same, e.g., xenon by contacting gas from the process stream, material or environment with a carbon adsorbent effective to sorptively capture same, free of or with reduced concentration of fluid species present with the high value gas in the high value gas-containing gas in the process stream, material or environment. Other aspects of the disclosure include a radon detection method and product.