Abstract:
An electric powertrain includes a first electric motor that has an uninterrupted connection with a drive shaft of a vehicle. The electric powertrain further includes a second electric motor that has an interruptible connection with the drive shaft. In one form, this interruptible connection includes a clutch. The electric powertrain further includes a first gear train in the form of a first planetary gear and a second gear train in the form of a second planetary gear. To provide a compact configuration, the first electric motor and second electric motor are arranged in a longitudinal orientation with the drive shaft.
Abstract:
An electric powertrain includes a first electric motor that has an uninterrupted connection with a drive shaft of a vehicle. The electric powertrain further includes a second electric motor that has an interruptible connection with the drive shaft. In one form, this interruptible connection includes a clutch. The electric powertrain further includes a first gear train in the form of a first planetary gear and a second gear train in the form of a second planetary gear. To provide a compact configuration, the first electric motor and second electric motor are arranged in a longitudinal orientation with the drive shaft.
Abstract:
A drive system for a vehicle that includes a transmission with three forward and three reverse gears. The transmission is optionally coupled to an electric motor as part of a fully electric or hybrid drive system. The transmission optionally includes a first and a second planetary gearset, a first and a second brake, and a clutch which may be separated into individual drive modules, optionally in separate detachable housings. A single electric motor may be provided with a single transmission, or multiple electric motors may be included to individually drive multiple separate tires, tracks, or other earth engaging elements. Single or multiple motors may be arranged upstream or downstream of the transmission, and they may be aligned parallel with or perpendicular to a drive axle.
Abstract:
An electric powertrain includes a first electric motor that has an uninterrupted connection with a drive shaft of a vehicle. The electric powertrain further includes a second electric motor that has an interruptible connection with the drive shaft. In one form, this interruptible connection includes a clutch. The electric powertrain further includes a first gear train in the form of a first planetary gear and a second gear train in the form of a second planetary gear. To provide a compact configuration, the first electric motor and second electric motor are arranged in a longitudinal orientation with the drive shaft.
Abstract:
A continuously variable planetary (CVP) transmission, comprising a movable stator radially disposed about an axis, the movable stator having at least a first slot. The CVP transmission having a clip removably coupled to the first slot where the clip defining a channel and a planet spindle defining a first end where the first end is disposed within the channel of the clip.
Abstract:
The present disclosure provides an actuation mechanism for applying a mechanical diode clutch. The actuation mechanism includes a capsule including a cylindrical body defining an interior chamber, the cylindrical body defining a first opening at a first end and a second opening at a second end thereof. The actuation mechanism also includes a pin having a body and a radially-extending arm, the pin being retained within the interior chamber of the capsule. An apply spring is coupled at one end to the pin and a return spring is retained within the interior chamber of the capsule. The return spring is disposed between the pin on one end and the cylindrical body on the opposite end thereof. The return spring substantially surrounds the apply spring.
Abstract:
The present disclosure provides an actuation mechanism for applying a mechanical diode clutch. The actuation mechanism includes a capsule including a cylindrical body defining an interior chamber, the cylindrical body defining a first opening at a first end and a second opening at a second end thereof. The actuation mechanism also includes a pin having a body and a radially-extending arm, the pin being retained within the interior chamber of the capsule. An apply spring is coupled at one end to the pin and a return spring is retained within the interior chamber of the capsule. The return spring is disposed between the pin on one end and the cylindrical body on the opposite end thereof. The return spring substantially surrounds the apply spring.
Abstract:
An electric powertrain includes a first electric motor that has an uninterrupted connection with a drive shaft of a vehicle. The electric powertrain further includes a second electric motor that has an interruptible connection with the drive shaft. In one form, this interruptible connection includes a clutch. The electric powertrain further includes a first gear train in the form of a first planetary gear and a second gear train in the form of a second planetary gear. To provide a compact configuration, the first electric motor and second electric motor are arranged in a longitudinal orientation with the drive shaft.
Abstract:
The present disclosure provides an actuation mechanism for applying a mechanical diode clutch. The actuation mechanism includes a capsule including a cylindrical body defining an interior chamber, the cylindrical body defining a first opening at a first end and a second opening at a second end thereof. The actuation mechanism also includes a pin having a body and a radially-extending arm, the pin being retained within the interior chamber of the capsule. An apply spring is coupled at one end to the pin and a return spring is retained within the interior chamber of the capsule. The return spring is disposed between the pin on one end and the cylindrical body on the opposite end thereof. The return spring substantially surrounds the apply spring.
Abstract:
The present disclosure provides an actuation assembly for applying a mechanical diode clutch. The clutch includes an outer member, an inner member, and a strut. The actuation assembly includes a plate having an apply portion and a plurality of legs, where each of the plurality of legs has a first end coupled to the apply portion and a second end adapted to couple to a shift sleeve. A mechanism is coupled to the apply portion of the plate. The mechanism includes at least one biasing member. The plate is moveable between an unapply position and an apply position such that a movement from the unapply position to the apply position induces contact between the mechanism and the strut.