Abstract:
A method for detecting cracks in a carbon fiber bicycle frame using an embedded optical fiber is provided. Optical time-domain reflectometry is employed to detect cracks in a bicycle frame made of carbon fibers intertwining with a single-mode optical fiber. The single-mode optical fiber is thus embedded into the bicycle frame and consolidated with the carbon fibers during a manufacturing process of the bicycle frame. Integration of the single-mode optical fiber, which has a small diameter, low cost and lightweight, into the bicycle frame adds little to a production cost and weight of the bicycle frame. The optical fiber consolidated within the bicycle frame can be connected with an optical time-domain reflectometer for efficiently detecting twists or cracks of the carbon fibers in the bicycle frame, both as a quality check in the manufacturing process and as a safety check after the bicycle frame has been used for some time.
Abstract:
A fiber grating sensor including an elastic circular plate and one or two FBG'ss attached to the bottom surface of the elastic circular plate. Two ends of the FBG are connected to an optic fiber for signal transmission. The fiber grating sensor readouts are independent of temperature variation. The fiber grating sensor mechanism according to the present invention may be applied in a variety of sensors such as gauge pressure transducer, differential pressure transducer, load cell and displacement transducer with a distributive design, and for various purposes.
Abstract:
The invention provides a monitoring device mainly for sensing ground displacement, including the fiber Bragg grating sensored deflectometer and the signal interrogator/computer system. The device uses a segmented design that consists of a flexible tube (referred to as the flexible segment) and two rigid segments and thus referred to as the double hinged FBG segmented deflectometer (DH-FBG-SD). For field installation, multiple DH-FBG-SD units are connected together to form a string as it is inserted into a grouted-in-place inclinometer casing. The distortion of the inclinometer casing induced by ground movement causes relative rotation of the inserted DH-FBG-SD. All of the DH-FBG-SD units are connected to an FBG interrogator/computer system situated on ground surface. The FBG signals are recorded and analyzed by the interrogator/computer system.
Abstract:
A fiber grating sensor including an elastic circular plate and one or two FBG'ss attached to the bottom surface of the elastic circular plate. Two ends of the FBG are connected to an optic fiber for signal transmission. The fiber grating sensor readouts are independent of temperature variation. The fiber grating sensor mechanism according to the present invention may be applied in a variety of sensors such as gauge pressure transducer, differential pressure transducer, load cell and displacement transducer with a distributive design, and for various purposes.
Abstract:
The optic fiber Bragg grating (FBG) sensor comprises of an elastic circular diaphragm and one or two FBG attached to the bottom surface of the elastic circular diaphragm. Two ends of the FBG are connected to an optic fiber for signal transmission. The FBG sensor readouts are independent of temperature fluctuation. The FBG sensor mechanism according to the present invention may be applied for various purposes such as a gauge pressure transducer, differential pressure transducer, load cell and displacement transducer with distributive capabilities.
Abstract:
The invention provides a monitoring device mainly for sensing ground displacement, including the fiber Bragg grating sensored deflectometer and the signal interrogator/computer system. The device uses a segmented design that consists of a flexible tube (referred to as the flexible segment) and two rigid segments and thus referred to as the FBG segmented deflectometer (FBG-SD). For field installation, multiple FBG-SD units are connected together to form a string as it is inserted into a grouted-in-place inclinometer casing. The distortion of the inclinometer casing induced by ground movement causes relative rotation of the inserted FBG-SD. All of the FBG-SD units are connected to an FBG interrogator/computer system situated on ground surface. The FBG signals are recorded and analyzed by the interrogator/computer system.