SELECTIVE OCCLUSION SYSTEM FOR AUGMENTED REALITY DEVICES
    1.
    发明申请
    SELECTIVE OCCLUSION SYSTEM FOR AUGMENTED REALITY DEVICES 审中-公开
    选择性的现场设备选择性系统

    公开(公告)号:US20160247319A1

    公开(公告)日:2016-08-25

    申请号:US14628099

    申请日:2015-02-20

    Abstract: Examples are disclosed that relate to selectively dimming or occluding light from a real-world background to enhance the display of virtual objects on a near-eye display. One example provides a near-eye display system including a see-through display, an image source, a background light sensor, a selective background occluder comprising a first liquid crystal panel and a second liquid crystal panel positioned between a pair of polarizers, and a computing device including instructions executable by a logic subsystem to determine a shape and a position of an occlusion area based upon a virtual object to be displayed, obtain a first and a second birefringence pattern for the first and the second liquid crystal panels, produce the occlusion area by applying the birefringence patterns to the liquid crystal panels, and display the virtual object in a location visually overlapping with the occlusion area.

    Abstract translation: 公开了涉及从真实世界背景中选择性地调光或遮挡光以增强近眼显示器上的虚拟物体的显示的实例。 一个例子提供了一种近眼显示系统,包括透视显示器,图像源,背景光传感器,包括位于一对偏振器之间的第一液晶面板和第二液晶面板的选择性背景遮蔽器,以及 计算装置,包括可由逻辑子系统执行的指令,以基于要显示的虚拟对象来确定遮挡区域的形状和位置,获得第一和第二液晶面板的第一和第二双折射图案,产生遮挡 通过将双折射图案应用于液晶面板,并将虚拟物体显示在与遮挡区域视觉重叠的位置。

    Combining tomographic images in situ with direct vision using a holographic optical element
    2.
    发明授权
    Combining tomographic images in situ with direct vision using a holographic optical element 有权
    使用全息光学元件将断层图像原位与直视相结合

    公开(公告)号:US07559895B2

    公开(公告)日:2009-07-14

    申请号:US10126453

    申请日:2002-04-19

    Abstract: A device for combining tomographic images with human vision using a half-silvered mirror to merge the visual outer surface of an object (or a robotic mock effector) with a simultaneous reflection of a tomographic image from the interior of the object. The device maybe used with various types of image modalities including ultrasound, CT, and MRI. The image capture device and the display may or may not be fixed to the semi-transparent mirror. If not fixed, the imaging device may provide a compensation device that adjusts the reflection of the displayed ultrasound on the half-silvered mirror to account for any change in the image capture device orientation or location.

    Abstract translation: 一种用于使用半镀银镜将断层图像与人类视觉组合的装置,以将物体(或机器人模拟效应器)的视觉外表面与来自物体内部的断层图像同时反射。 该装置可以与各种类型的图像模式一起使用,包括超声,CT和MRI。 图像捕获装置和显示器可以固定或不固定到半透明反射镜。 如果不固定,则成像装置可以提供补偿装置,该补偿装置调整半镀银镜上显示的超声波的反射,以考虑图像捕获装置取向或位置的任何变化。

    Transparent display for mobile device
    3.
    发明授权
    Transparent display for mobile device 有权
    移动设备透明显示

    公开(公告)号:US09581814B2

    公开(公告)日:2017-02-28

    申请号:US13354353

    申请日:2012-01-20

    Abstract: A projection-type display device is connectively coupled to a mobile device (such as a smartphone) where the light generated by a small projection device is directed at a relatively transparent holographic optical element (HOE) to provide a display to an operator of the mobile device or a viewer. The projector and HOE may be configured to produce and magnify a virtual image that is perceived as being displayed at a large distance from the operator who views the image through the HOE. The HOE may comprise a volume grating effective at only the narrow wavelengths of the projection device to maximize transparency while also maximizing the light reflected from the display projector to the eyes of the operator.

    Abstract translation: 投影型显示装置连接到移动装置(例如智能手机),其中由小投影装置产生的光指向相对透明的全息光学元件(HOE),以向移动装置的操作者提供显示 设备或观看者。 投影仪和HOE可以被配置为产生和放大被感知为与通过HOE观看图像的操作者相距很远的显示的虚拟图像。 HOE可以包括仅在投影装置的窄波长处有效的体积光栅,以最大化透明度,同时最大化从显示投影仪反射到操作者的眼睛的光。

    Optical tablet stylus and indoor navigation system
    4.
    发明授权
    Optical tablet stylus and indoor navigation system 有权
    光学平板电脑触笔和室内导航系统

    公开(公告)号:US08872800B2

    公开(公告)日:2014-10-28

    申请号:US13287147

    申请日:2011-11-02

    CPC classification number: G06F3/0325 G06F3/03545

    Abstract: Optical user input technology comprises three-dimensional (3D) input sensors and 3D location emitters to enable high-precision input in a 3D space, and the 3D location emitter may be a stylus or other writing or pointing device. Certain implementations may comprise an orientation assembly for transmitting orientation of the 3D location emitter in addition to location within a 3D space, and some implementations may also use selectively identifiable signaling from the 3D location emitters to the 3D input sensors to distinguish one 3D location emitter from another, to transmit data other data from a 3D location emitter to a 3D location sensor, or as a means of providing orientation information for the 3D location emitter with respect to the 3D location sensor. Also disclosed are position fixing, indoor navigation, and other complementary applications using 3D input sensors and/or 3D location emitters.

    Abstract translation: 光学用户输入技术包括三维(3D)输入传感器和3D位置发射器,以实现3D空间中的高精度输入,并且3D位置发射器可以是触笔或其他写入或指示设备。 某些实施方式可以包括用于发送3D位置发射器的取向以及3D空间内的位置的定向组件,并且一些实施方式还可以使用从3D位置发射器到3D输入传感器的选择性可识别的信令,以区分一个3D位置发射器 另一个,将数据从3D位置发射器传输到3D位置传感器,或者作为相对于3D位置传感器为3D位置发射器提供取向信息的手段。 还公开了位置固定,室内导航和使用3D输入传感器和/或3D位置发射器的其他补充应用。

    HEAD-MOUNTED LIGHT-FIELD DISPLAY
    5.
    发明申请
    HEAD-MOUNTED LIGHT-FIELD DISPLAY 审中-公开
    头安装的光场显示

    公开(公告)号:US20130285885A1

    公开(公告)日:2013-10-31

    申请号:US13719334

    申请日:2012-12-19

    Abstract: A head-mounted light-field display system (HMD) includes two light-field projectors (LFPs), one per eye, each comprising a solid-state LED emitter array (SLEA) operatively coupled to a microlens array (MLA). The SLEA and the MLA are positioned so that light emitted from an LED of the SLEA reaches the eye through at most one microlens from the MLA. The HMD's LFP comprises a moveable solid-state LED emitter array coupled to a microlens array for close placement in front of an eye—without the need for any additional relay or coupling optics—wherein the LED emitter array physically moves with respect to the microlens array to mechanically multiplex the LED emitters to achieve resolution via mechanically multiplexing.

    Abstract translation: 头戴式光场显示系统(HMD)包括两个光场投影仪(LFP),每个眼睛包括一个可操作地耦合到微透镜阵列(MLA)的固态LED发射器阵列(SLEA)。 SLEA和MLA的位置使得从SLEA的LED发出的光从MLA到达眼睛最多一个微透镜。 HMD的LFP包括耦合到微透镜阵列的可移动固态LED发射器阵列,用于紧密放置在眼前,而不需要任何附加的继电器或耦合光学器件,其中LED发射器阵列相对于微透镜阵列物理移动 机械地多路复用LED发射器,以通过机械复用实现分辨率。

    OPTICAL TABLET STYLUS AND INDOOR NAVIGATION SYSTEM
    6.
    发明申请
    OPTICAL TABLET STYLUS AND INDOOR NAVIGATION SYSTEM 有权
    光学平板电视和室内导航系统

    公开(公告)号:US20130106782A1

    公开(公告)日:2013-05-02

    申请号:US13287147

    申请日:2011-11-02

    CPC classification number: G06F3/0325 G06F3/03545

    Abstract: Optical user input technology comprises three-dimensional (3D) input sensors and 3D location emitters to enable high-precision input in a 3D space, and the 3D location emitter may be a stylus or other writing or pointing device. Certain implementations may comprise an orientation assembly for transmitting orientation of the 3D location emitter in addition to location within a 3D space, and some implementations may also use selectively identifiable signaling from the 3D location emitters to the 3D input sensors to distinguish one 3D location emitter from another, to transmit data other data from a 3D location emitter to a 3D location sensor, or as a means of providing orientation information for the 3D location emitter with respect to the 3D location sensor. Also disclosed are position fixing, indoor navigation, and other complementary applications using 3D input sensors and/or 3D location emitters.

    Abstract translation: 光学用户输入技术包括三维(3D)输入传感器和3D位置发射器,以实现3D空间中的高精度输入,并且3D位置发射器可以是触笔或其他写入或指示设备。 某些实施方式可以包括用于发送3D位置发射器的取向以及3D空间内的位置的定向组件,并且一些实施方式还可以使用从3D位置发射器到3D输入传感器的选择性可识别的信令,以区分一个3D位置发射器 另一个,将数据从3D位置发射器传输到3D位置传感器,或者作为相对于3D位置传感器为3D位置发射器提供取向信息的手段。 还公开了位置固定,室内导航和使用3D输入传感器和/或3D位置发射器的其他补充应用。

    OMNIDIRECTIONAL SUPER-RESOLUTION MICROSCOPY
    7.
    发明申请
    OMNIDIRECTIONAL SUPER-RESOLUTION MICROSCOPY 审中-公开
    OMNIDIRECTIONAL超分辨率显微镜

    公开(公告)号:US20130093871A1

    公开(公告)日:2013-04-18

    申请号:US13276206

    申请日:2011-10-18

    Abstract: A microscopy method and apparatus includes placing a specimen to be observed adjacent to a reflective holographic optical element (RDOE). A beam of light that is at least partially coherent is focused on a region of the specimen. The beam forward propagates through the specimen and is at least partially reflected backward through the specimen. The backward reflected light interferes with the forward propagating light to provide a three dimensional interference pattern that is at least partially within the specimen. A specimen region illuminated by the interference pattern is imaged at an image detector. Computational reconstruction is used to generate a microscopic image in all three spatial dimensions (X,Y,Z), simultaneously with resolution greater than conventional microscopy.

    Abstract translation: 显微镜方法和装置包括将待观察的样本放置在与反射全息光学元件(RDOE)相邻的位置。 至少部分相干的光束聚焦在样本的一个区域上。 梁向前传播通过试样,至少部分地通过试样向后反射。 后向反射光干扰正向传播光,以提供至少部分在样本内的三维干涉图案。 由干涉图案照射的样本区域在图像检测器处成像。 计算重建用于在所有三个空间维度(X,Y,Z)中生成显微镜图像,同时分辨率大于常规显微镜。

    Imaging structure color conversion

    公开(公告)号:US09726887B2

    公开(公告)日:2017-08-08

    申请号:US13397539

    申请日:2012-02-15

    CPC classification number: G02B27/017 G02B2027/0112

    Abstract: In embodiments of imaging structure color conversion, an imaging structure includes a silicon backplane with a driver pad array. An embedded light source is formed on the driver pad array in an emitter material layer, and the embedded light source emits light in a first color. A conductive material layer over the embedded light source forms a p-n junction between the emitter material layer and the conductive material layer. A color conversion layer can then convert a portion of the first color to at least a second color. Further, micro lens optics can be implemented to direct the light that is emitted through the color conversion layer.

    ACTIVE REFLECTIVE SURFACES
    9.
    发明申请
    ACTIVE REFLECTIVE SURFACES 有权
    主动反光表面

    公开(公告)号:US20130335671A1

    公开(公告)日:2013-12-19

    申请号:US13525649

    申请日:2012-06-18

    Abstract: In embodiments of active reflective surfaces, an imaging structure includes a circuit control layer that controls pixel activation to emit light. A reflective layer of the imaging structure reflects input light from an illumination source. An active color conversion material that is formed on the reflective layer converts the input light to the emitted light. The active color conversion material can be implemented as a phosphorus material or quantum dot material that converts the input light to the emitted light, and in embodiments, the active color conversion material is laminated directly on the reflective layer.

    Abstract translation: 在有源反射表面的实施例中,成像结构包括控制像素激活以发光的电路控制层。 成像结构的反射层反射来自照明源的输入光。 形成在反射层上的主动颜色转换材料将输入光转换成发射光。 有源颜色转换材料可以实现为将输入光转换为发射光的磷材料或量子点材料,并且在实施例中,有源颜色转换材料直接层压在反射层上。

    DIRECT VIEW AUGMENTED REALITY EYEGLASS-TYPE DISPLAY
    10.
    发明申请
    DIRECT VIEW AUGMENTED REALITY EYEGLASS-TYPE DISPLAY 审中-公开
    直接查看已实现的眼镜型显示

    公开(公告)号:US20130286053A1

    公开(公告)日:2013-10-31

    申请号:US13720905

    申请日:2012-12-19

    Abstract: A low-power, high-resolution, see-through (i.e., “transparent”) augmented reality (AR) display without projectors with relay optics separate from the display surface but instead feature a small size, low power consumption, and/or high quality images (high contrast ratio). The AR display comprises sparse integrated light-emitting diode (iLED) array configurations, transparent drive solutions, and polarizing optics or time multiplexed lenses to combine virtual iLED projection images with a user's real world view. The AR display may also feature full eye-tracking support in order to selectively utilize only the portions of the display(s) that will produce only projection light that will enter the user's eye(s) (based on the position of the user's eyes at any given moment of time) in order to achieve power conservation.

    Abstract translation: 低功率,高分辨率,透视(即“透明”)增强现实(AR)显示,而不具有与显示表面分离的中继光学器件的投影仪,而是具有小尺寸,低功耗和/或高 优质图像(高对比度)。 AR显示器包括稀疏集成发光二极管(iLED)阵列配置,透明驱动解决方案和偏振光学器件或时间复用镜头,以将虚拟iLED投影图像与用户的真实世界视图相结合。 AR显示器还可以具有完全的眼睛跟踪支持,以便仅选择性地仅利用将仅产生将进入用户眼睛的投影光的显示器的部分(基于用户的眼睛的位置) 任何给定的时刻),以实现节电。

Patent Agency Ranking