Abstract:
Internal components of gas or steam turbines are inspected with a 3D scanning camera inspection system that is inserted and positioned within the turbine, for example through a gas turbine combustor nozzle port. Three dimensional internal component measurements are performed using projected light patterns generated by a stripe projector and a 3D white light matrix camera. Real time dimensional information is gathered without physical contact, which is helpful for extracting off-line engineering information about the scanned structures. Exemplary 3D scans, preferably with additional visual images, are performed of the gas path side of a gas turbine combustor support housing, combustor basket and transition with or without human intervention.
Abstract:
A system for imaging characters on a surface of an object through a coating on the object includes one or more infrared (IR) radiation sources disposed to irradiate IR radiation upon a object, an IR camera disposed to received IR radiation reflected from the surface of the object, the IR camera adapted to create a digital image of the surface of the object from the received IR radiation, and a computing device in signal communication with the IR camera adapted to receive the digital image of the surface of the object from the IR camera, in which the computing device has installed therein optical character recognition (OCR) software adapted to detecting and recognizing characters imprinted upon the surface of the object.
Abstract:
Projection beams are emitted from a projection unit. An image generating unit associated with the projection unit generates phase-structured image sequences in close-up by a light-emitting display or at a distance by a projection module and downstream image guides, and transmits the sequences to the projection unit. In this manner, both alternatives allow sequences of phase-structured images, phase-shifted relative to each other, to be projected onto the surface to be measured and imaged by the projection unit, even under very spatially limited conditions. The latter alternative allows a battery-powered, capsule-shaped 3D measurement head to be inserted into cavities to be measured without any feeds (other than the guide wire). In this case, the battery powers both the micro display and the image sensor, wherein the image sensor data representing the reflection of the projected image can be either transmitted wirelessly or stored.
Abstract:
An endoscope measures the topography of a surface. The endoscope contains a projection unit and an imaging unit. The projection unit and the imaging unit are arranged successively in relation to an axis of the endoscope. The configuration of the projection unit and the imaging unit arranged axially behind one another on the axis permits a significantly smaller endoscope configuration.
Abstract:
A confocal displacement sensor is created in which, through a graduated arrangement of optical outputs relative to an imaging optic in the object area of displacement sensor, real images of the optical outputs can be created at different heights. A surface to be measured, which is located in the area between the real images, at least partly scatters back illumination beams emitted by the optical outputs. As such, two measurement beams are created for which the intensities are each recorded by a light detector. This is done by interpolation between the measured light intensities. The height position of the scanned points of the surface can be calculated and the surface to be measured can be measured simultaneously at a number of scanning points. Two planar light sources are preferably used for light generation and two planar high-resolution cameras for light detection.
Abstract:
In addition to triangulation methods, measurement systems according to the confocal principle are employed for the three-dimensional sensing of surfaces. These measurement systems have a higher resolution but, under certain circumstances, a lower data rate. An optical proximity sensor is described which, on the basis of the confocal microscope, carries out automatic inspection of surfaces in a time which is acceptable for a fabrication process. A linear system of corresponding light sources and photo receivers is used instead of a scanning beam, which requires a high outlay for generation. The optical path length between the receiving unit and the optical imaging arrangement is varied for the resolution of height values, wherein a light intensity maximum is detected by a peak detector.
Abstract:
An endoscope for quantitatively determining dimensions of an object in a cavity is provided. The endoscope has a projector connected to a light guide that can be introduced through the instrument channel. In the introduced position the projector projects a pattern at a defined illumination angle onto the object to be examined. The endoscope has a camera that captures the projected pattern at a fixed viewing angle in a distorted from corresponding to the object. The distorted form is used for quantitatively determining dimensions of the object by a triangulation method.
Abstract:
An endoscope measures the topography of a surface. The endoscope contains a projection unit and an imaging unit. The endoscope is characterized in that an objective unit is provided as a component both of the projection unit and the imaging unit. By the integration of the projection unit and the imaging unit, which both use a common objective unit, the structural volume required by both units is reduced resulting in a smaller endoscope.
Abstract:
An optical measuring device for a three-dimensional measuring of a hollow space formed within an object is provided. The optical measurement device has a light source, which is provided for emitting illumination light along an illumination beam path, and an optical deflection element, which spatially structures the radiated illumination light such that on an inside wall an illumination line forms, which extends along the longitudinal axis. The shape of the line is dependant on the size and shape of the hollow space. Further, the optical measuring device has a camera, which detects the illumination line via an imaging beam path at a triangulation angle. Through an appropriate evaluation of the image of the detected shape and size of the illumination line by the camera, the three-dimensional shape of the hollow space is determined.
Abstract:
An optical measuring device for measuring an inner wall of a cavity has a confocal proximity sensor. The beam path of the illumination light and the measuring light is deflected by a rotatably mounted reflector. By introducing an object-side end of the measuring device into the cavity a peripheral side wall of the cavity is measured. The reflector is rotated about an axis of rotation which coincides with the longitudinal axis of the optical measuring device. The inner wall is scanned along a line that revolves around the axis of rotation. The optical measuring device is equipped with two confocal proximity sensors. At the object-side end of the measuring device dual optics with a plurality of optical components are provided, by which the illumination beams of the two confocal proximity sensors are focused diametrically outwards at mutually opposing scanning points on the inner wall of the cavity.