Abstract:
Touch sensor configurations for reducing electrostatic discharge events in the border area of a touch sensor panel is disclosed. Touch sensors (e.g., electrodes formed on the cover material and/or the opaque mask) can be susceptible to certain events such as arcing and discharge/joule heating, which may negatively affect touch sensor performance. Examples of the disclosure can include increasing the trace width, spacing, and/or thickness in the border area relative to the trace width, spacing, and/or thickness in the visible/active area along one or more sides of the touch sensor panel. In some examples, touch electrodes can be located exclusively in the visible/active areas along one or more sides of the touch sensor panel, while dummy sections can be included in both the border and visible/active areas. Additionally or alternatively, one or more gaps between adjacent touch electrodes in the border area or serpentine routing can be included.
Abstract:
An electronic device may be provided with a housing such as a metal housing in which a display is mounted. Control circuitry in the electronic device such as a system-on-chip integrated circuit may produce image data. A display driver integrated circuit may receive the image data from the system-on-chip integrated circuit and may display the image data on the display. In the absence of electrostatic discharge, the display driver integrated circuit may operate normally and may generate a heartbeat signal. When disrupted due to electrostatic discharge, the display driver circuitry may cease production of the heartbeat signal. The system-on-chip integrated circuit can implement a watchdog timer. If the watchdog timer times out because the heartbeat signal is not received within a timeout period, the system-on-chip integrated circuit may reset the display.