Abstract:
An additive manufacturing apparatus for forming a part includes a support, a first dispenser to deliver a layer of first particles on a support or an underlying layer on the support, a second dispenser to deliver second particles onto the layer of first particles such that the second particles infiltrate into the layer of first particles, an energy source to fuse the first particle and second particles to form a fused layer of the part, and a controller coupled to the first dispenser, second dispenser and energy source.
Abstract:
An additive manufacturing system includes a platen having a top surface to support an object being manufactured, a feed material dispenser to deliver a plurality of successive layers of feed material over the platen, an energy source positioned above the platen to fuse at least a portion of an outermost layer of feed material, and a coolant fluid dispenser to deliver a coolant fluid onto the outermost layer of feed material after at least a portion of the outermost layer has been fused.
Abstract:
An additive manufacturing system includes a platen having a top surface to support an object being manufactured, a dispenser to deliver a plurality of successive layers of precursor material over the platen, a plurality of lamps disposed below the top surface of the platen to heat the platen, and an energy source to fuse at least some of the outermost layer of precursor material.
Abstract:
An additive manufacturing system includes a platen having a top surface to support an object being manufactured, a dispenser to deliver a plurality of successive layers of feed material over the platen, an energy source positioned above the platen to direct a beam to fuse at least some of an outermost layer of feed material, and a plurality of lamps disposed above the platen and around the energy source to radiatively heat the outermost layer of feed material.
Abstract:
An additive manufacturing apparatus for forming a part includes a support, a first dispenser to deliver a layer of first particles on a support or an underlying layer on the support, a second dispenser to deliver second particles onto the layer of first particles such that the second particles infiltrate into the layer of first particles, an energy source to fuse the first particle and second particles to form a fused layer of the part, and a controller coupled to the first dispenser, second dispenser and energy source.
Abstract:
Embodiments of the present disclosure relate to advanced polishing pads with tunable chemical, material and structural properties, and new methods of manufacturing the same. According to one or more embodiments of the disclosure, it has been discovered that a polishing pad with improved properties may be produced by an additive manufacturing process, such as a three-dimensional (3D) printing process. Embodiments of the present disclosure thus may provide an advanced polishing pad that has discrete features and geometries, formed from at least two different materials that include functional polymers, functional oligomers, reactive diluents, and curing agents. For example, the advanced polishing pad may be formed from a plurality of polymeric layers, by the automated sequential deposition of at least one resin precursor composition followed by at least one curing step, wherein each layer may represent at least one polymer composition, and/or regions of different compositions.
Abstract:
A method of additive manufacturing to form a component comprises successively depositing a plurality of layers to form the component. Depositing at least one of the plurality of layers includes depositing a layer of a first particulate precursor over a platen, depositing a second particulate precursor on portions of the platen over the layer of the first particulate precursor specified by a controller, and directing energy to the second particulate precursor deposited on the portion of the platen to cause an exothermic chemical reaction between the first particulate precursor and the second particulate precursor. The exothermic chemical reaction produces heat that sinters products of the chemical reaction to fabricate the layer of the component.
Abstract:
A precursor for additive manufacturing includes a powder of metallic particulates, each particulate having a metal core having mean diameters between 10 and 150 μm, the metal core having a first melting temperature; and each of the metal core having a functionalized surface, the functionalized surface includes a metallic material having a second melting point lower than the first melting point.
Abstract:
Embodiments described herein relate to integrated abrasive (IA) polishing pads, and methods of manufacturing IA polishing pads using, at least in part, surface functionalized abrasive particles in an additive manufacturing process, such as a 3D inkjet printing process. In one embodiment, a method of forming a polishing article includes dispensing a first plurality of droplets of a first precursor, curing the first plurality of droplets to form a first layer comprising a portion of a sub-polishing element, dispensing a second plurality of droplets of the first precursor and a second precursor onto the first layer, and curing the second plurality of droplets to form a second layer comprising portions of the sub-polishing element and portions of a plurality of polishing elements. Here, the second precursor includes functionalized abrasive particles having a polymerizable group chemically bonded to surfaces thereof.
Abstract:
An additive manufacturing system includes a platen having a top surface, a support structure, a powder dispenser coupled to the support structure and positioned above the platen and configured to deliver a powder in a linear region that extends along a first axis, a gas dispenser coupled to the support structure in a fixed position relative to the powder dispenser and having an outlet to deliver a gas across the outermost layer of feed material, an energy source configured to selectively fused the layer of powder, and an actuator coupled to the support to move the support with the powder dispenser and the gas dispenser together along a second axis perpendicular to the first axis and parallel to the top surface such that the linear region and the outlet sweep along the second axis to deposit the powder in a swath over the platen and deliver the gas.