Abstract:
In one aspect of the invention, an apparatus for improving the efficiency of a heat exchange system having a compressor, condenser, expansion valve, evaporator and a flowing refrigerant is provided. The apparatus is a tubular device having a refrigerant entrance and a refrigerant exit and is positioned in the heat exchange system between the expansion valve and the evaporator. The device further comprises a means for removing heat from the refrigerant. According to an embodiment of the invention, the heat removal means is a cylindrical screen coated with diamonds.
Abstract:
A method and apparatus for improving refrigeration and air conditioning efficiency for use with a heat exchange system having a compressor, condenser, evaporator, expansion valve, and circulating refrigerant. The apparatus includes a liquid refrigerant containing vessel having a refrigerant entrance and a refrigerant exit with the vessel positioned in the heat exchange system between the condenser and the evaporator, and means for creating a turbulent flow of liquefied refrigerant. The apparatus further preferably includes a refrigerant bypass path to sub-cool a portion of the refrigerant within the vessel; a disk positioned at the liquid refrigerant entrance to develop a low pressure area on the back side and create a turbulent flow of refrigerant entering the vessel; and a refrigerant valve incorporated into the refrigerant path downstream of the expansion valve and before the coil which develops a vortex that continues through the refrigerant coil.
Abstract:
A method and apparatus for use with a heat exchange system having a compressor, condenser, evaporator, an expansion device, and circulating refrigerant is provided. The apparatus comprises a chamber positioned between the condenser and the evaporator. According to an embodiment of the invention, the chamber comprises a down tube with holes for the passage of refrigerant from the chamber and a top inlet port comprising a vapor expansion screen. The suction of the refrigerant through the holes draws refrigerant towards the top inlet port past the vapor expansion screen, allowing for further cooling within the chamber. When the refrigerant eventually exits the chamber, it is considerably cooler than when it entered the vessel, making the entire refrigeration system more efficient.
Abstract:
In one aspect of the invention, an apparatus for improving the efficiency of a heat exchange system having a compressor, condenser, expansion valve, evaporator and a flowing refrigerant is provided. The apparatus is a tubular device having a refrigerant entrance and a refrigerant exit and is positioned in the heat exchange system between the expansion valve and the evaporator. The device further comprises a means for removing heat from the refrigerant. According to an embodiment of the invention, the heat removal means is a cylindrical screen coated with diamonds.
Abstract:
A method and apparatus to improve the efficiency of a heat exchange system comprising a compressor, condenser, expansion valve, an evaporator and an expansion valve are provided. The apparatus is positioned between the expansion valve and the evaporator and comprises an atomizing disc, an outer connector pipe and two inner pipes inside the connector pipe in contact with the disc. The disc is provided with vertical blades that are angled to provide the turbulence necessary to create a low pressure at the back of the disc. The low pressure thus created vaporizes the partially vaporized incoming refrigerant from the expansion valve and thereby improves the efficiency of the refrigeration system.
Abstract:
A method and apparatus for use with a heat exchange system having a compressor, condenser, evaporator, an expansion device, and circulating refrigerant is provided. The apparatus comprises a chamber positioned between the condenser and the evaporator. According to an embodiment of the invention, the chamber comprises a down tube with holes for the passage of refrigerant from the chamber and a top inlet port comprising a vapor expansion screen. The suction of the refrigerant through the holes draws refrigerant towards the top inlet port past the vapor expansion screen, allowing for further cooling within the chamber. When the refrigerant eventually exits the chamber, it is considerably cooler than when it entered the vessel, making the entire refrigeration system more efficient.
Abstract:
A method and apparatus for improving refrigeration and air conditioning efficiency for use with a heat exchange system having a compressor, condenser, evaporator, expansion device, and circulating refrigerant. The apparatus includes is a liquid refrigerant containing vessel having a refrigerant entrance and a refrigerant exit with the vessel positioned in the heat exchange system between the condenser and the evaporator, and means for creating a turbulent flow of liquefied refrigerant. The apparatus further preferably includes a refrigerant bypass path to sub-cool a portion of the refrigerant within the vessel; a disk positioned at the liquid refrigerant entrance to develop a, low pressure area on the back side and create a turbulent flow of refrigerant entering the vessel; and a refrigerant valve incorporated into the refrigerant path downstream of the expansion valve and before the coil which develops a vortex that continues through the refrigerant coil.
Abstract:
A method and apparatus for improving refrigeration and air conditioning efficiency for use with a heat exchange system having a compressor, condenser, evaporator, expansion device, and circulating refrigerant. The apparatus includes is a liquid refrigerant containing vessel having a refrigerant entrance and a refrigerant exit with the vessel positioned in the heat exchange system between the condenser and the evaporator, and means for creating a turbulent flow of liquefied refrigerant. The apparatus further preferably includes a refrigerant bypass path to sub-cool a portion of the refrigerant within the vessel; a disk positioned at the liquid refrigerant entrance to develop a low pressure area on the back side and create a turbulent flow of refrigerant entering the vessel; and a refrigerant valve incorporated into the refrigerant path downstream of the expansion valve and before the coil which develops a vortex that continues through the refrigerant coil.
Abstract:
A method and apparatus for improving refrigeration and air conditioning efficiency for use with a heat exchange system having a compressor, condenser, evaporator, expansion device, and circulating refrigerant. The apparatus includes is a liquid refrigerant containing vessel having a refrigerant entrance and a refrigerant exit with the vessel positioned in the heat exchange system between the condenser and the evaporator, and means for creating a turbulent flow of liquefied refrigerant. The apparatus further preferably includes a refrigerant bypass path to sub-cool a portion of the refrigerant within the vessel; a disk positioned at the liquid refrigerant entrance to develop a, low pressure area on the back side and create a turbulent flow of refrigerant entering the vessel; and a refrigerant valve incorporated into the refrigerant path downstream of the expansion valve and before the coil which develops a vortex that continues through the refrigerant coil.
Abstract:
A method and apparatus for improving refrigeration and air conditioning efficiency for use with a heat exchange system having a compressor, condenser, evaporator, expansion device, and circulating refrigerant. The apparatus includes is a liquid refrigerant containing vessel having a refrigerant entrance and a refrigerant exit with the vessel positioned in the heat exchange system between the condenser and the evaporator, and means for creating a turbulent flow of liquefied refrigerant. The apparatus further preferably includes a refrigerant bypass path to sub-cool a portion of the refrigerant within the vessel; a disk positioned at the liquid refrigerant entrance to develop a low pressure area on the back side and create a turbulent flow of refrigerant entering the vessel; and a refrigerant valve incorporated into the refrigerant path downstream of the expansion valve and before the coil which develops a vortex that continues through the refrigerant coil.