Systems and Methods for Sensor Data Processing and Object Detection and Motion Prediction for Robotic Platforms

    公开(公告)号:US20240369977A1

    公开(公告)日:2024-11-07

    申请号:US18656210

    申请日:2024-05-06

    Abstract: Systems and methods are disclosed for detecting and predicting the motion of objects within the surrounding environment of a system such as an autonomous vehicle. For example, an autonomous vehicle can obtain sensor data from a plurality of sensors comprising at least two different sensor modalities (e.g., RADAR, LIDAR, camera) and fused together to create a fused sensor sample. The fused sensor sample can then be provided as input to a machine learning model (e.g., a machine learning model for object detection and/or motion prediction). The machine learning model can have been trained by independently applying sensor dropout to the at least two different sensor modalities. Outputs received from the machine learning model in response to receipt of the fused sensor samples are characterized by improved generalization performance over multiple sensor modalities, thus yielding improved performance in detecting objects and predicting their future locations, as well as improved navigation performance.

    Systems and methods for sensor data processing and object detection and motion prediction for robotic platforms

    公开(公告)号:US12259694B2

    公开(公告)日:2025-03-25

    申请号:US18656210

    申请日:2024-05-06

    Abstract: Systems and methods are disclosed for detecting and predicting the motion of objects within the surrounding environment of a system such as an autonomous vehicle. For example, an autonomous vehicle can obtain sensor data from a plurality of sensors comprising at least two different sensor modalities (e.g., RADAR, LIDAR, camera) and fused together to create a fused sensor sample. The fused sensor sample can then be provided as input to a machine learning model (e.g., a machine learning model for object detection and/or motion prediction). The machine learning model can have been trained by independently applying sensor dropout to the at least two different sensor modalities. Outputs received from the machine learning model in response to receipt of the fused sensor samples are characterized by improved generalization performance over multiple sensor modalities, thus yielding improved performance in detecting objects and predicting their future locations, as well as improved navigation performance.

    Object detection and property determination for autonomous vehicles

    公开(公告)号:US12205030B2

    公开(公告)日:2025-01-21

    申请号:US18497025

    申请日:2023-10-30

    Abstract: Systems, methods, tangible non-transitory computer-readable media, and devices for detecting objects are provided. For example, the disclosed technology can obtain a representation of sensor data associated with an environment surrounding a vehicle. Further, the sensor data can include sensor data points. A point classification and point property estimation can be determined for each of the sensor data points and a portion of the sensor data points can be clustered into an object instance based on the point classification and point property estimation for each of the sensor data points. A collection of point classifications and point property estimations can be determined for the portion of the sensor data points clustered into the object instance. Furthermore, object instance property estimations for the object instance can be determined based on the collection of point classifications and point property estimations for the portion of the sensor data points clustered into the object instance.

Patent Agency Ranking