Abstract:
An aircraft galley, according to one implementation, includes a lighting system having a DC, linear LED task light that is positioned in a groove along the edge of an overhang above the galley's work surface. The task light is oriented downward orthogonally to the cabin floor so as to illuminate a work surface of the galley. In some implementations, the task light is angled so that it illuminates the work surface of the galley in which it is installed, the forward, aft, or cross-aisle opposing galley, if applicable, and the floor.
Abstract:
A light-emitting diode (LED) light module is provided, comprising: a single-piece printed circuit board (PCB) comprising the following integrated on the PCB: a plurality of LEDs in each of a plurality of LED groups; a power supply converter; a controller module comprising a processor, memory, operational program stored in the memory and executable by the processor; input/output (I/O) circuitry, and an LED driver that drives the LEDs; the module further comprising: a single metallic housing that contains the PCB; a heat sink that conducts heat from components on the PCB to the housing; and a lens for diffusing or directing lights from the LEDs.
Abstract:
A method of operating a lighting fixture comprising a plurality of discrete illumination sources of distinguishably different color coordinates comprises determining target color coordinates and luminous flux at which to operate the lighting fixture, determining input electrical power values for each of the plurality of discrete illumination sources that substantially produce the target color coordinates and luminous flux by referencing a calibration data lookup table having calibration data based on measurements of the plurality of discrete illumination sources, determining a color mixing zone defined by three distinguishably different color coordinates of the plurality of discrete illumination sources within which the target color coordinates lie according to the calibration data, determining luminous flux ratios for each of the plurality of discrete illumination sources having one of the three distinguishably different color coordinates defining the color mixing zone that substantially produces the target color coordinates, and determining input electrical power levels for each of the plurality of discrete illumination sources that generate the determined luminous flux ratios.
Abstract:
A method of operating a lighting fixture comprising a plurality of discrete illumination sources of distinguishably different color coordinates comprises determining target color coordinates and luminous flux at which to operate the lighting fixture, determining input electrical power values for each of the plurality of discrete illumination sources that substantially produce the target color coordinates and luminous flux by referencing a calibration data lookup table having calibration data based on measurements of the plurality of discrete illumination sources, determining a color mixing zone defined by three distinguishably different color coordinates of the plurality of discrete illumination sources within which the target color coordinates lie according to the calibration data, determining luminous flux ratios for each of the plurality of discrete illumination sources having one of the three distinguishably different color coordinates defining the color mixing zone that substantially produces the target color coordinates, and determining input electrical power levels for each of the plurality of discrete illumination sources that generate the determined luminous flux ratios.
Abstract:
A lighting system includes a base unit and a first modular light. The first modular light includes a first light unit, and a first lighting technology module. The first light unit includes a first light element that emits light, and a first mechanical, electrical, and control signal physical light unit interface that is removably coupled to a first mating light unit interface on the base unit. The first lighting technology module is physically separate from the first light unit and includes a first light driver that drives the first light element, a first light engine that is coupled to the first light driver, and a first mechanical, electrical, and control signal physical light technology module interface that is removably coupled to a first mating light technology module interface on the base unit.
Abstract:
A modular area washlight illumination system and method for operating are provided that comprise an intelligent light module group that has: one or more light modules, each of which comprises a plurality of discrete illumination sources; a power supply; and an intelligent module group controller comprising: a) circuitry that controls the illumination levels of the illumination sources; and b) an interface for receiving and sending information. The system further comprises a system controller that comprises: a) an attendant control panel serving as a user interface; and b) a system controller interface that is connected to the module group controller interface.
Abstract:
A light-emitting diode (LED) light module is provided, comprising: a single-piece printed circuit board (PCB) comprising the following integrated on the PCB: a plurality of LEDs in each of a plurality of LED groups; a power supply converter; a controller module comprising a processor, memory, operational program stored in the memory and executable by the processor; input/output (I/O) circuitry, and an LED driver that drives the LEDs; the module further comprising: a single metallic housing that contains the PCB; a heat sink that conducts heat from components on the PCB to the housing; and a lens for diffusing or directing lights from the LEDs.
Abstract:
A power inverter is provided comprising: a control board comprising: a processor that generates an AC waveform from a pulse width modulation (PWM) signal according to instructions or data stored in a memory associated with the processor; and an output at which a signal having the AC waveform is provided; a power supply module that is connected to the control board, comprising: an input connected to the output of the control board at which the AC waveform signal is provided; and an output at which an AC power signal is provided on a channel of the power inverter.
Abstract:
A modular light emitting diode (LED), remote phosphor, and other lighting technologies lighting assembly includes a plurality of lighting subassemblies and a power supply electrically coupled with the plurality of lighting subassemblies in parallel such that each of the plurality of lighting subassemblies receives electrical power from the power supply in parallel with the other of the plurality of lighting subassemblies.
Abstract:
A power inverter is provided comprising: a control board comprising: a processor that generates an AC waveform from a pulse width modulation (PWM) signal according to instructions or data stored in a memory associated with the processor; and an output at which a signal having the AC waveform is provided; a power supply module that is connected to the control board, comprising: an input connected to the output of the control board at which the AC waveform signal is provided; and an output at which an AC power signal is provided on a channel of the power inverter.